Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage medium, for implementing a pronunciation dictionary that stores entity name pronunciations. In one aspect, a method includes actions of receiving audio data corresponding to an utterance that includes a command and an entity name. Additional actions may include generating, by an automated speech recognizer, an initial transcription for a portion of the audio data that is associated with the entity name, receiving a corrected transcription for the portion of the utterance that is associated with the entity name, obtaining a phonetic pronunciation that is associated with the portion of the audio data that is associated with the entity name, updating a pronunciation dictionary to associate the phonetic pronunciation with the entity name, receiving a subsequent utterance that includes the entity name, and transcribing the subsequent utterance based at least in part on the updated pronunciation dictionary.
Abstract:
Methods, systems, and apparatus for receiving data indicating a location of a particular touchpoint representing a latest received touchpoint in a sequence of received touchpoints; identifying candidate characters associated with the particular touchpoint; generating, for each of the candidate characters, a confidence score; identifying different candidate sequences of characters each including for each received touchpoint, one candidate character associated with a location of the received touchpoint, and one of the candidate characters associated with the particular touchpoint; for each different candidate sequence of characters, determining a language model score and generating a transcription score based at least on the confidence score for one or more of the candidate characters in the candidate sequence of characters and the language model score for the candidate sequence of characters; selecting, and providing for output, a representative sequence of characters from among the candidate sequences of characters based at least on the transcription scores.
Abstract:
In some examples, a computing device includes at least one processor; and at least one module, operable by the at least one processor to: output, for display at an output device, a graphical keyboard; receive an indication of a gesture detected at a location of a presence-sensitive input device, wherein the location of the presence-sensitive input device corresponds to a location of the output device that outputs the graphical keyboard; determine, based on at least one spatial feature of the gesture that is processed by the computing device using a neural network, at least one character string, wherein the at least one spatial feature indicates at least one physical property of the gesture; and output, for display at the output device, based at least in part on the processing of the at least one spatial feature of the gesture using the neural network, the at least one character string.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating representations of input sequences. One of the methods includes receiving a grapheme sequence, the grapheme sequence comprising a plurality of graphemes arranged according to an input order; processing the sequence of graphemes using a long short-term memory (LSTM) neural network to generate an initial phoneme sequence from the grapheme sequence, the initial phoneme sequence comprising a plurality of phonemes arranged according to an output order; and generating a phoneme representation of the grapheme sequence from the initial phoneme sequence generated by the LSTM neural network, wherein generating the phoneme representation comprises removing, from the initial phoneme sequence, phonemes in one or more positions in the output order.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recognizing speech using neural networks. One of the methods includes receiving an audio input; processing the audio input using an acoustic model to generate a respective phoneme score for each of a plurality of phoneme labels; processing one or more of the phoneme scores using an inverse pronunciation model to generate a respective grapheme score for each of a plurality of grapheme labels; and processing one or more of the grapheme scores using a language model to generate a respective text label score for each of a plurality of text labels.
Abstract:
In one implementation a computer-implemented method includes generating a group of telephone contacts for a first user, wherein the generating includes identifying a second user as a contact of the first user based upon a determination that the second user has at least a threshold email-based association with the first user; and adding the identified second user to the group of telephone contacts for the first user. The method further includes receiving a first request to connect a first telephone device associated with the first user to a second telephone device associated with the second user. The method also includes identifying a contact identifier of the second telephone device using the generated group of telephone contacts for the first user, and initiating a connection between the first telephone device and the second telephone device using the identified contact identifier.
Abstract:
The subject matter of this specification can be embodied in, among other things, a method that includes receiving an audio signal and initiating speech recognition tasks by a plurality of speech recognition systems (SRS's). Each SRS is configured to generate a recognition result specifying possible speech included in the audio signal and a confidence value indicating a confidence in a correctness of the speech result. The method also includes completing a portion of the speech recognition tasks including generating one or more recognition results and one or more confidence values for the one or more recognition results, determining whether the one or more confidence values meets a confidence threshold, aborting a remaining portion of the speech recognition tasks for SRS's that have not generated a recognition result, and outputting a final recognition result based on at least one of the generated one or more speech results.
Abstract:
In some examples, a computing device includes at least one processor; and at least one module, operable by the at least one processor to: output, for display at an output device, a graphical keyboard; receive an indication of a gesture detected at a location of a presence-sensitive input device, wherein the location of the presence-sensitive input device corresponds to a location of the output device that outputs the graphical keyboard; determine, based on at least one spatial feature of the gesture that is processed by the computing device using a neural network, at least one character string, wherein the at least one spatial feature indicates at least one physical property of the gesture; and output, for display at the output device, based at least in part on the processing of the at least one spatial feature of the gesture using the neural network, the at least one character string.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining pronunciations for particular terms. The methods, systems, and apparatus include actions of obtaining audio samples of speech corresponding to a particular term and obtaining candidate pronunciations for the particular term. Further actions include generating, for each candidate pronunciation for the particular term and audio sample of speech corresponding to the particular term, a score reflecting a level of similarity between of the candidate pronunciation and the audio sample, wherein the said score for the particular term is obtained by using a minimum of individual scores of phonemes comprising the term. Additional actions include aggregating the scores for each candidate pronunciation and adding one or more candidate pronunciations for the particular term to a pronunciation lexicon based on the aggregated scores for the candidate pronunciations.
Abstract:
A method of operating a voice-enabled business directory search system includes receiving category-business pairs, each category-business pair including a business category and a specific business, and establishing a data structure having nodes based on the category-business pairs. Each node of the data structure is associated with one or more business categories and a speech recognition language model for recognizing specific businesses associated with the one or more businesses categories.