摘要:
The present invention relates to a method and apparatus for cooling an optical fiber during the drawing process of said fiber. In particular the present method for cooling an optical fiber comprises flowing a cooling gas onto the optical fiber wherein the flow direction of the cooling gas is substantially transversal with respect the longitudinal axis of the fiber. It has been found that by employing a flow of cooling gas being substantially transversal to the longitudinal axis of the drawn fiber, the cooling efficiency of the fiber may be substantially improved. The apparatus according to the invention comprises a hollow elongated body, said hollow elongated body having at least one wall defining an internal elongated space through which the drawn fiber passes wherein the at least one wall of said hollow elongated body is provided with at least one longitudinal opening through which a cooling gas is introduced into the hollow body and at least one longitudinal opening through which said cooling gas is removed from said hollow body.
摘要:
An apparatus and method for transmitting an optical signal. The invention is directed to a transmission line having first (16) and second (18) spans of single mode fiber. The fiber of the first span has a negative dispersion with an absolute value of between about 2.5 ps/nm/km and 10 ps/nm/km at the operating wavelength. The second span (18) is connected to the first span (16) and has a positive dispersion at the operating wavelength. The positive dispersion of the second span compensates for the negative dispersion of the first span such that the cumulative dispersion across the first and second spans is approximately zero. The increased dispersion of the first span coincides with characteristics to lower non-linear effects, permits a longer length of the second span, and helps lower attenuation in the transmission line.
摘要:
A method for manufacturing an optical fiber (100) having low PMD, comprises the steps of: a) heating at least one end portion (3a) of a preform (3); b) drawing an optical fiber (100) from a free end of said heated end portion (3a) along a fiber drawing axis (I—I); c) coating said optical fiber (100) with a suitable coating material; d) applying to said coated optical fiber (100) a torque about said fiber drawing axis (I—I), e) winding said coated optical fiber (100) onto a collecting spool (9). According to the invention, step d) is carried out by means of a pulley (16) supported upstream of said collecting spool (9) and rotated about the fiber drawing axis (I—I), said optical fiber (100) being wound up onto said pulley (16) for an angle of at least about 360°. Advantageously, such method also allows to notably increase the amount of optical fiber produced per unit of time with respect to the prior art.
摘要:
Method for winding a fiber element onto a support. The fiber element having at least two longitudinal portions (Pi) with different characteristics. The method including the steps of supplying the fiber element to the support and associating with each longitudinal portion a respective value of the winding pitch (pi) which is different from the values associated with the portions adjacent thereto. The winding pitch associated with each portion being modulated in accordance with a periodic function.
摘要:
A process for producing a high-purity optical silica preform, comprising (a) vaporization of an organosilicon compound; (b) thermal decomposition of the said organosilicon compound in the vapor state, to give amorphous fused silica particles; (c) deposition of the said amorphous fused silica particles on a support, in which the said organosilicon compound has the formula (I) in which R1, R2, R3 and R4 have the meanings given in the text.
摘要:
The present invention relates to a radiation curable coating composition comprising a radiation curable oligomer comprising a backbone derived from polypropylene glycol and a dimer acid based polyester polyol, wherein said coating composition, when cured, is having: a) a hardening temperature (Th) of from −10° C. to about −20° C. and a modulus measured at said Th of lower than 5.0 MPa; or b) a hardening temperature (Th) of from −20° C. to about −30° C. and a modulus measured at said Th of lower than 20.0 MPa; or c) a hardening temperature (Th) of lower than about −30° C. and a modulus measured at said Th of lower than 70.0 MPa.
摘要:
An optical transmission fiber for use in a metropolitan or access network is disclosed. The transmission line includes a fiber being single mode at a first operating wavelength of around 1310 nm and a second operating wavelength of around 1550 nm. The dispersion of the fiber is negative at one of the first and second wavelengths and positive at the other wavelength, with an absolute value of between about 5 and 15 ps/nm/km. The fiber also has a zero dispersion wavelength that is located between the first and second operating wavelengths, and an effective area at a wavelength around 1550 nm greater than about 60 &mgr;m2. The cabled fiber has a cutoff wavelength less than about 1300 nm. The fiber allows wavelength division multiplexing (WDM) operation in both the bands (1310 nm and 1550 nm) by reducing nonlinear effects such as four-wave mixing (FWM).
摘要:
An optical transmission fiber has a refractive index profile with an area of increased index of refraction at the inner core of the fiber, an annular region positioned radially outward from the inner core with an index of refraction exceeding the index of the inner core, and at least a low dopant content region in a cross-sectional region between the inner core and the annular region. A low loss cladding layer surrounds the core region. The optical transmission fiber with this segmented core profile provides a high effective area, low non-linearity coefficient, nonzero dispersion, and relatively flat dispersion slope.
摘要:
The present invention relates to an optical amplifier and a telecommunication system including a plurality of the optical amplifiers connected in cascade, particularly adapted for a wavelength division multiplexing transmission, in which a combination of dopants in the active fiber core of the optical amplifiers enables a high signal/noise ratio to be achieved for all channels in a predetermined wavelength band, even in the presence of several simultaneously fed signals.
摘要:
In a process for manufacturing a micro-structured optical fibre, an intermediate preform is made by forming a sol; pouring the sol in a cylindrical mould including a set of structural generating elements defining internal structural elements of the intermediate preform; transforming the sol into a gel so as to obtain a cylindrical gel body defining the intermediate preform; and removing the cylindrical intermediate preform from the mould.