Abstract:
A system for predicting and summarizing medical events from electronic health records includes a computer memory storing aggregated electronic health records from a multitude of patients of diverse age, health conditions, and demographics including medications, laboratory values, diagnoses, vital signs, and medical notes. The aggregated electronic health records are converted into a single standardized data structure format and ordered arrangement per patient, e.g., into a chronological order. A computer (or computer system) executes one or more deep learning models trained on the aggregated health records to predict one or more future clinical events and summarize pertinent past medical events related to the predicted events on an input electronic health record of a patient having the standardized data structure format and ordered into a chronological order. An electronic device configured with a healthcare provider-facing interface displays the predicted one or more future clinical events and the pertinent past medical events of the patient.
Abstract:
In response to a conversion action associated with an online advertisement (“ad”), an advertiser associated with the ad generates a unique identifier (e.g., a pseudo random number), which is transmitted to a payment system through a user device. In some implementations, the unique identifier can be generated by a payment system in response to a request from an advertiser. The advertiser stores the unique identifier in a secure location that is accessible by the payment system. The payment system compares the received unique identifier with the stored unique identifier. If the received unique identifier matches the stored unique identifier, and if the received unique identifier was not previously generated by the advertiser, then the payment system deems the conversion action to be valid.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for scoring concept terms using a deep network. One of the methods includes receiving an input comprising a plurality of features of a resource, wherein each feature is a value of a respective attribute of the resource; processing each of the features using a respective embedding function to generate one or more numeric values; processing the numeric values using one or more neural network layers to generate an alternative representation of the features, wherein processing the floating point values comprises applying one or more non-linear transformations to the floating point values; and processing the alternative representation of the input using a classifier to generate a respective category score for each category in a pre-determined set of categories, wherein each of the respective category scores measure a predicted likelihood that the resource belongs to the corresponding category.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer program product, for selecting advertisements. In one aspect, a method includes receiving publisher selections of advertisements; associating the selected advertisements with an advertisement environment in a document; generating an advertisement request code for inclusion in the document; evaluating performance metrics for the selected advertisements; and in response to determining that the selected advertisements do not meet the performance threshold, optimizing the selection of selected advertisements based on the performance metrics; substituting a selected advertisement with a candidate advertisement and causing a client device to render the candidate advertisement in the advertisement environment in the document.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using embedded function with a deep network. One of the methods includes receiving an input comprising a plurality of features, wherein each of the features is of a different feature type; processing each of the features using a respective embedding function to generate one or more numeric values, wherein each of the embedding functions operates independently of each other embedding function, and wherein each of the embedding functions is used for features of a respective feature type; processing the numeric values using a deep network to generate a first alternative representation of the input, wherein the deep network is a machine learning model composed of a plurality of levels of non-linear operations; and processing the first alternative representation of the input using a logistic regression classifier to predict a label for the input.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for scoring concept terms using a deep network. One of the methods includes receiving an input comprising a plurality of features of a resource, wherein each feature is a value of a respective attribute of the resource; processing each of the features using a respective embedding function to generate one or more numeric values; processing the numeric values to generate an alternative representation of the features of the resource, wherein processing the floating point values comprises applying one or more non-linear transformations to the floating point values; and processing the alternative representation of the input to generate a respective relevance score for each concept term in a pre-determined set of concept terms, wherein each of the respective relevance scores measures a predicted relevance of the corresponding concept term to the resource.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for computing numeric representations of words. One of the methods includes obtaining a set of training data, wherein the set of training data comprises sequences of words; training a classifier and an embedding function on the set of training data, wherein training the embedding function comprises obtained trained values of the embedding function parameters; processing each word in the vocabulary using the embedding function in accordance with the trained values of the embedding function parameters to generate a respective numerical representation of each word in the vocabulary in the high-dimensional space; and associating each word in the vocabulary with the respective numeric representation of the word in the high-dimensional space.