Abstract:
Embodiments described herein provide for a method of launching atoms in an atom interferometer. The method includes determining a direction of the total effective acceleration force on the atoms, controlling a direction of launch of the atoms for measurement in the atom interferometer based on the direction of the total effective acceleration force, and obtaining measurements from the atoms.
Abstract:
An apparatus for inertial sensing is provided. The apparatus comprises at least one atomic inertial sensor, and one or more micro-electrical-mechanical systems (MEMS) inertial sensors operatively coupled to the atomic inertial sensor. The atomic inertial sensor and the MEMS inertial sensors operatively communicate with each other in a closed feedback loop.
Abstract:
A method for fabricating a vibratory structure gyroscope is provided herein. An annular cavity is formed in a first surface of a substrate, the annular cavity defining an anchor post located in a central portion of the annular cavity. A bubble layer is formed over the first surface of the substrate and over the annular cavity. The substrate and the bubble layer are heated to form a hemitoroidal bubble in the bubble layer over the annular cavity. A sacrificial layer is deposited over the hemitoroidal bubble of the bubble layer and an aperture is formed in the sacrificial layer, the aperture disposed over the anchor post in the annular cavity. A resonator layer is deposited over the sacrificial layer and the sacrificial layer between the bubble layer and the resonator layer is removed.
Abstract:
In an example, a chip-scale atomic clock physics package is provided. The physics package includes a body defining a cavity having a base surface and one or more side walls. The cavity includes a first step surface and a second step surface defined in the one or more side walls. A first scaffold mounted to the base surface in the cavity. One or more spacers defining an aperture therethrough are mounted to the second step surface in the cavity. A second scaffold is mounted to a first surface of the one or more spacers spans across the aperture of the one or more spacers. A third scaffold is mounted to a second surface of the one or more spacers in the cavity and spans across the aperture of the one or more spacers. Other components of the physics package are mounted to the first, second, and third scaffold.
Abstract:
An apparatus for inertial sensing is provided. The apparatus comprises at least one atomic inertial sensor, and one or more micro-electrical-mechanical systems (MEMS) inertial sensors operatively coupled to the atomic inertial sensor. The atomic inertial sensor and the MEMS inertial sensors operatively communicate with each other in a closed feedback loop.
Abstract:
A thermal metamaterial device comprises at least one MEMS thermal switch, comprising a substrate layer including a first material having a first thermal conductivity, and a thermal bus over a first portion of the substrate layer. The thermal bus includes a second material having a second thermal conductivity higher than the first thermal conductivity. An insulator layer is over a second portion of the substrate layer and includes a third material that is different from the first and second materials. A thermal pad is supported by a first portion of the insulator layer, the thermal pad including the second material and having an overhang portion located over a portion of the thermal bus. When a voltage is applied to the thermal pad, an electrostatic interaction occurs to cause a deflection of the overhang portion toward the thermal bus, thereby providing thermal conductivity between the thermal pad and the thermal bus.
Abstract:
A device includes a substrate and nanoscale fin formed from a first material, a RF emitter that emits energy in a range of radio frequencies, and a waveguide formed from a second material. The device further includes a bichromatic directional coupler configured to couple pump and probe laser light into the waveguide. The waveguide is positioned proximate to the nanoscale fin along a coupling length such that the pump laser light propagating within the waveguide is coupled into the nanoscale fin from evanescent wave overlap along the coupling length. The pump laser light causes the first material to absorb the probe laser light when energy emitted by the RF emitter is at one or more frequencies dependent on a magnetic field. The device further includes a processor configured to determine a magnetic field strength of the magnetic field based on an identification of the one or more frequencies.
Abstract:
In an example, an optical gimbal is described, the optical gimbal comprising: a pulse generator configured to generate at least two coherent beam splitting pulses; a first optical beam director configured to tilt the vector of the beam splitting pulses by an angle θ; an atom source configured to allow the beam splitting pulses to manipulate trapped atoms within the atom source; a processor configured to receive the angle θ, and control the pulse generator and the beam director; a detector coupled to the atom source configured to measure a final population of the atoms in different states.
Abstract:
A chip scale atomic clock (CSAC) is provided. The CSAC comprises: a temperature stabilized physics system, comprising a vapor cell and a magnetic field coil, and which is enclosed in a magnetic shield; and a temperature stabilized electronics circuitry electrically coupled to the temperature stabilized physics system.
Abstract:
A fully reciprocal atomic interferometric gyroscope is provided. The fully reciprocal atomic interferometric gyroscope includes an atomic chamber, a plurality of lasers, a controller and measurement sensor. The atomic chamber is used to hold an atom cloud. The plurality of lasers are selectively positioned to selectively direct laser beams into the atomic chamber. The controller is configured to control the plurality lasers to initially cool the atom cloud to a point where at least one optical lattice can be formed that is used to move wave function halves of atoms of the atom cloud along split wave function paths that form an interferometer cycle. The measurement sensor is configured to conduct a phase readout of a wave function upon the completion of at least one interferometer cycle around the split wave function paths.