Abstract:
A fully reciprocal atomic interferometric gyroscope is provided. The fully reciprocal atomic interferometric gyroscope includes an atomic chamber, a plurality of lasers, a controller and measurement sensor. The atomic chamber is used to hold an atom cloud. The plurality of lasers are selectively positioned to selectively direct laser beams into the atomic chamber. The controller is configured to control the plurality lasers to initially cool the atom cloud to a point where at least one optical lattice can be formed that is used to move wave function halves of atoms of the atom cloud along split wave function paths that form an interferometer cycle. The measurement sensor is configured to conduct a phase readout of a wave function upon the completion of at least one interferometer cycle around the split wave function paths.
Abstract:
Embodiments described herein provide for an on-chip alkali dispenser. The on-chip alkali dispenser includes a monolithic semiconductor substrate defining a trench therein, and an evaporable metal material disposed in the trench. A heating element is disposed proximate the evaporable metal material and configured to provide heat to the evaporable metal material. A getter material is disposed to sorb unwanted materials released from the evaporable metal material.
Abstract:
Systems and methods for a wafer scale atomic clock are provided. In at least one embodiment, a wafer scale device comprises a first substrate; a cell layer joined to the first substrate, the cell layer comprising a plurality of hermetically isolated cells, wherein separate measurements are produced for each cell in the plurality of hermetically isolated cells; and a second substrate joined to the cell layer, wherein the first substrate and the second substrate comprise electronics to control the separate measurements, wherein the separate measurements are combined into a single measurement.
Abstract:
Systems and methods for a wafer scale atomic clock are provided. In at least one embodiment, a wafer scale device comprises a first substrate; a cell layer joined to the first substrate, the cell layer comprising a plurality of hermetically isolated cells, wherein separate measurements are produced for each cell in the plurality of hermetically isolated cells; and a second substrate joined to the cell layer, wherein the first substrate and the second substrate comprise electronics to control the separate measurements, wherein the separate measurements are combined into a single measurement.
Abstract:
Embodiments described herein provide for a method of launching atoms in an atom interferometer. The method includes determining a direction of the total effective acceleration force on the atoms, controlling a direction of launch of the atoms for measurement in the atom interferometer based on the direction of the total effective acceleration force, and obtaining measurements from the atoms.
Abstract:
A system and method for magnetic navigation are provided. The system comprises a navigation system for a vehicle, at least one processor operatively coupled with the navigation system, and a magnetic navigation module operatively coupled with the processor. The magnetic navigation module including instructions, executable by the processor, to perform a method comprising selecting latitude, longitude, and altitude ranges for the vehicle that is expected to travel in a region of interest; obtaining one or more magnetic anomaly maps for the region of interest; choosing a base Earth-centered, Earth-fixed (ECEF) plane and coordinates for the one or more magnetic anomaly maps; constructing an integration mesh on the base ECEF plane; and performing a Strakhov iteration process on the integration mesh to compute values of magnetic anomalies on a base source. The method then computes an estimated magnetic anomaly at a given point in space using alternative computation approaches.
Abstract:
A sensor system comprises a laser source that emits a pump beam at a first wavelength and a probe beam at a second wavelength, and an optical means for receiving the pump and probe beams. The optical means is operative to generate a plurality of light beams, each having a different frequency, from the pump and probe beams. One or more cells receive the light beams from the optical means and allow passage of the light beams therethrough, with the cells containing alkali atoms. A dichroic filter is configured to receive the light beams from the cells. The dichroic filter separates pump beam light and probe beam light from the light beams. A detector array receives the probe beam light from the dichroic filter. The detector array includes a two-dimensional array of photosensors that map out transmission of respective light beams corresponding to the probe beam light through the cells.
Abstract:
In an example, an optical gimbal is described, the optical gimbal comprising: a pulse generator configured to generate at least two coherent beam splitting pulses; a first optical beam director configured to tilt the vector of the beam splitting pulses by an angle θ; an atom source configured to allow the beam splitting pulses to manipulate trapped atoms within the atom source; a processor configured to receive the angle θ, and control the pulse generator and the beam director; a detector coupled to the atom source configured to measure a final population of the atoms in different states.
Abstract:
In one embodiment, a method is provided. The method comprises: spin polarizing alkali atoms in a cavity; shifting resonant frequencies of the cavity at a rate proportional to a magnitude of a magnetic field incident upon the cavity; reflecting modulated right hand circularly polarized light and modulated left hand circularly polarized light from the cavity; transforming the reflected modulated right hand circularly polarized light to reflected modulated vertically polarized light, and the reflected modulated left hand circularly polarized light to reflected modulated horizontally polarized modulated light; generating a first error signal having an amplitude proportional to the shift in a resonant frequency corresponding to the reflected modulated vertically polarized light and a sign indicative of whether a frequency of the reflected modulated vertically polarized light is above or below the corresponding resonant frequency; generating a second error signal having an amplitude proportional to the shift in a resonant frequency corresponding to the reflected modulated horizontally polarized light and a sign indicative of whether a frequency of the reflected modulated horizontally polarized light is above or below the corresponding resonant frequency; adjusting a carrier frequency of the modulated right hand circularly polarized light in response to the first error signal; adjusting a carrier frequency of the modulated left hand circularly polarized light in response to the second error signal; and generating a measured Larmor frequency.
Abstract:
In one embodiment, a method is provided. The method comprises: spin polarizing alkali atoms in a cavity; shifting resonant frequencies of the cavity at a rate proportional to a magnitude of a magnetic field incident upon the cavity; reflecting modulated right hand circularly polarized light and modulated left hand circularly polarized light from the cavity; transforming the reflected modulated right hand circularly polarized light to reflected modulated vertically polarized light, and the reflected modulated left hand circularly polarized light to reflected modulated horizontally polarized modulated light; generating a first error signal having an amplitude proportional to the shift in a resonant frequency corresponding to the reflected modulated vertically polarized light and a sign indicative of whether a frequency of the reflected modulated vertically polarized light is above or below the corresponding resonant frequency; generating a second error signal having an amplitude proportional to the shift in a resonant frequency corresponding to the reflected modulated horizontally polarized light and a sign indicative of whether a frequency of the reflected modulated horizontally polarized light is above or below the corresponding resonant frequency; adjusting a carrier frequency of the modulated right hand circularly polarized light in response to the first error signal; adjusting a carrier frequency of the modulated left hand circularly polarized light in response to the second error signal; and generating a measured Larmor frequency.