Abstract:
Systems and methods for an optical frequency comb stimulated Brillouin scattering gyroscope with a rigid optical waveguide resonator are provided. In one embodiment, a system comprises: a light source that produces an optical frequency comb comprising a multiple-frequency light field; a rigid optical waveguide resonator coupled to the light source, wherein a recirculating optical frequency comb produced from the optical frequency comb propagates in a first direction around the rigid optical waveguide resonator and generates within the rigid optical waveguide a SBS light field comprising at least one SBS frequency component, and wherein one or more optical frequency components of the recirculating optical frequency comb are locked on resonance peaks of the rigid optical waveguide resonator; and an optical mixer configured to produce an optical beat signal that varies as a function of a frequency difference between the stimulated Brillouin scattering light field and the recirculating optical frequency comb.
Abstract:
Systems and methods for a small low cost resonator fiber optic gyroscope (RFOG) with reduced optical errors are provided. In one embodiment, a RFOG comprises: a light source; an optical chip configured to couple a clockwise optical signal and a counterclockwise optical signal from the light source into a fiber optic resonator and couple the clockwise optical signal and the counterclockwise optical signal from the fiber optic resonator to at least one photodetector. The fiber optic resonator comprises a fiber optic coil having a first end point and a second end point. The fiber optic coil has a 90-degree splice located substantially half-way between the first end point and the second end point, is wrapped around a first fiber stretcher located between the first end point and the 90-degree splice, and is wrapped around a second fiber stretcher that is located between the second end point and the 90-degree splice.
Abstract:
Systems and methods for stabilized stimulated Brillouin scattering lasers with ultra-low phase noise are provided. In one embodiment, a method for producing a Stimulated Brillouin Scattering (SBS) beam comprises: generating laser light from a tunable laser source; splitting the laser light into a first light beam and a second light beam; creating a phase modulated light beam by applying a phase modulation to the first light beam; locking a frequency of the laser light to a frequency of a ring cavity using the phase modulated light beam and a Pound-Drever-Hall servo loop coupled to the tunable laser source; coupling the second light beam into the ring cavity in a direction of travel opposite to that of the phase modulated light beam; generating a Stimulated Brillouin Scattering light beam in the ring cavity from the second light beam; and outputting the Stimulated Brillouin Scattering light beam.
Abstract:
One embodiment is directed towards a stabilized laser including a laser to produce light at a frequency and a resonator coupled to the laser such that the light from the laser circulates therethrough. The laser also includes Pound-Drever-Hall (PDH) feedback electronics configured to adjust the frequency of the light from the laser to reduce phase noise in response to light sensed at the reflection port of the resonator and transmission port feedback electronics configured to adjust the frequency of the light from the laser toward resonance of the resonator at the transmission port in response to the light sensed at the transmission port of the resonator, wherein the transmission port feedback electronics adjust the frequency at a rate at least ten times slower than the PDH feedback electronics.
Abstract:
In one embodiment a system including a resonator fiber-optic gyroscope configured to measure rotation rate is provided. The resonator fiber-optic gyroscope includes a sensing resonator have a first resonance frequency for a first laser beam propagation direction and a second resonance frequency for a second laser beam propagation direction, an optical mixer coupled to an output of the sensing resonator and configured to mix an output of the sensing resonator with a reference laser, wherein the optical mixer outputs a beat signal, and a resonance tracking electronics coupled to the optical mixer. The resonance tracking electronics are configured to demodulate the beat signal at a frequency offset to produce first in-phase and quadrature demodulated information, generate R-squared information from a sum of squares of the first in-phase and quadrature demodulated information, and demodulate the R-squared information at a resonance tracking modulation frequency.
Abstract:
A resonator fiber optic gyroscope (RFOG) is provided. The RFOG includes a gyroscope resonator having a clockwise input port and a counter-clockwise input port; a first laser configured to couple a clockwise optical beam into to the clockwise input port; a clockwise Pound-Drever-Hall modulation generator to modulate the clockwise optical beam with a resonance tracking modulation before the clockwise optical beam is coupled into the clockwise input port; bias correction electronics; FSR-detection-and-servo electronics including a switch communicatively coupled to the clockwise Pound-Drever-Hall modulation generator; a clockwise transmission detector configured to receive an optical beam output from the counter-clockwise input port and output signals to the bias correction electronics and the FSR-detection-and-servo electronics; and a second laser configured to couple a counter-clockwise optical beam into to the counter-clockwise input port, wherein the FSR of the gyroscope resonator is measured based on the Pound-Drever-Hall modulation of the clockwise optical beam.
Abstract:
A directional coupler with reduced phase deviation is provided. The directional coupler includes a first coupler waveguide and second coupler waveguide. At least one of a spaced distance between the first coupler waveguide and the second coupler waveguide and a length of the first coupler waveguide and the second coupler waveguide selected to achieve an acceptable phase deviation and a set coupling ratio. The phase deviation is caused by a difference in loss coefficients between a first optical mode in the first coupler waveguide and a second optical mode in the second coupler waveguide.
Abstract:
An interferometric resonator optical gyroscope includes an optical frequency comb generator configured to generate an optical frequency comb. Optical signals representative of the optical frequency comb pass through an optical resonator in different directions, and a rotation rate is determined based on the extent of interference between the optical signals. Parameters of the optical frequency comb generator can be controlled by a control servo based on an intensity of the optical signals after propagating in the optical resonator. Utilizing an optical frequency comb generator reduces the bias error during gyroscope operation.
Abstract:
A gyroscope comprises first and second light sources that emit first and second beams with broadband spectrums, and a waveguide arrangement that communicates with the light sources. A resonator communicates with the waveguide arrangement to receive the beams. A first circulator is coupled to the waveguide arrangement between the first light source and the resonator. A second circulator is coupled to the waveguide arrangement between the second light source and the resonator. A first rate detector communicates with the resonator through the first circulator, and a second rate detector communicates with the resonator through the second circulator. The rate detectors produce rate measurements based on a detected resonance frequency shift of the beams in the resonator caused by rotation of the gyroscope. Outputs of the rate detectors are used to calculate a rotation rate that is corrected for errors due to a time varying pathlength change in the resonator.
Abstract:
Techniques are provided for diminishing bias error, in a resonator optical gyroscope, due to an undesired, parasitic optical mode which is orthogonal to a desired optical mode. Energy levels of the undesired, parasitic mode can be diminished utilizing polarizing beam splitters each of which suppresses energy of the undesired, parasitic mode of a clockwise or a counterclockwise optical signal more than energy of the desired mode of the CW optical signal. Optionally, one or more components of a travelling wave resonator system are configured to suppress energy of the undesired, parasitic mode of a clockwise and/or a counterclockwise optical signal more than energy of the desired mode of the respective optical signal(s). Optionally, the desired optical mode is either a transverse magnetic (TM) mode or a transverse electric (TE) mode, and the undesired, parasitic optical mode is respectively the TE mode or the TM mode.