Abstract:
A fuel cell is provided that includes a cell stack having a plurality of unit cells stacked in a first direction. An enclosure is disposed to surround the cell stack and includes an inlet that suctions external air and an outlet that discharges air that has been suctioned through the inlet and has circulated in the space between the cell stack and the enclosure. An insulating member is disposed to extend in the first direction in the space between an outer surface of the cell stack and an inner surface of the enclosure. The insulating member divides the space into a plurality of spaces and has an aperture formed therein to provide communication between the divided plurality of spaces, and an air intake member configured to suction air discharged from the outlet.
Abstract:
A fuel cell includes a cell stack including a plurality of stacked unit cells and a heating unit configured to apply heat to the cell stack. The heating unit includes a heat-generating part and a heat-generating-part support part disposed on an end side of the cell stack. The heat-generating-part support part allows the heat-generating part to be fitted thereinto or to be drawn out therefrom.
Abstract:
An insulation covered bus bar includes a bus bar formed of a conductive material for transmission of electric power. An insulation tube wraps the bus bar and formed of an insulation material having a characteristic of electric insulation. A fixing unit is formed so as to wrap around an outer circumferential surface of the bus bar, connected to an end of the insulation tube, installed to be fixedly disposed to the bus bar so that the insulation tube is fixed within the bus bar.
Abstract:
A power net system of a fuel cell and a method for controlling the same are provided. The power net system includes: a fuel cell to generate electric power through a reaction of a fuel gas and an oxidation gas; batteries to be charged by the electric power generated by the fuel cell or discharged to supply electric power; main lines electrically connecting the fuel cell and the batteries; main relays provided in the main lines to open or allow electrical connections between the fuel cell and the batteries; COD lines branched from the main lines between the fuel cell and the main relays and provided with a COD device to consume input electric power; COD relays provided in the COD lines to open or allow electrical connections to the COD device through the COD lines; and a controller to control the main relays or the COD relays to supply electric power charged in the batteries to the fuel cell.
Abstract:
A fuel cell system power supply includes: a fuel cell stack configured to react hydrogen and oxygen in air with each other in order to generate electricity; a high-voltage converter configured to boost output power of the fuel cell stack; and a high-voltage junction unit configured to transmit the output power of the fuel cell stack to the high-voltage converter and to receive high-voltage power from the high-voltage converter. The high-voltage junction unit has a structure configured to simultaneously accommodate an output terminal of the fuel cell stack and an input terminal of the high-voltage converter. Consequently, the assembly structure of the high-voltage junction unit may be simplified, whereby productivity may be improved. In addition, maintainability may be improved, whereby it is possible to efficiently maintain a fuel cell vehicle.
Abstract:
A vehicle includes a boost converter configured to bypass or to convert a stack voltage and output the bypassed or converted stack voltage as a first voltage in response to a first control signal, a first switching unit configured to be switched in response to a first switching signal to form a main path to supply the first voltage to a battery, a buck converter configured to convert and output a level of the first voltage to the battery as a second voltage in response to a second control signal, a second switching unit configured to be switched in response to a second switching signal to form a bypass path to supply the second voltage to the battery, and a controller configured to inspect a level of voltage charged in the battery and generate the first and second control signals and the first and second switching signals based thereon.
Abstract:
A fuel cell includes a cell stack including a plurality of stacked unit cells and a heating unit configured to apply heat to the cell stack. The heating unit includes a heat-generating part and a heat-generating-part support part disposed on an end side of the cell stack. The heat-generating-part support part allows the heat-generating part to be fitted thereinto or to be drawn out therefrom.
Abstract:
Provided is an end cell heater for a fuel cell capable of preventing water existing in reaction cells of a fuel cell stack from being frozen to improve initial start ability and initial driving performance of the fuel cell at the time of cold-starting the fuel cell during winter by disposing heaters on end cells disposed at both ends of the fuel cell stack and capable of securing air-tightness and pressure resistance properties of air passages and fuel passages formed in the end cell.
Abstract:
An end cell heater assembly includes: a case which has a first surface joined to an end plate of a fuel cell stack; a planar heating element installed in an accommodating groove formed in a second surface of the case; a terminal plate which is stacked and interposed between the planar heating element and an end cell of the fuel cell stack, joined and electrically connected to the end cell, and transferring heat generated by the planar heating element to the end cell; and a terminal which is integrally formed with the terminal plate so as to output electrical energy generated by the fuel cell stack and transferred through the terminal plate, to the outside.
Abstract:
Disclosed are a safety system of a fuel cell vehicle and a control method for the safety system. A safety system of a fuel cell vehicle using a fuel cell and a high voltage battery as a power source may include: a power switch disposed on a power wire connecting the power source and a power load to each other; an insulation resistance measuring device measuring an insulation resistance between the power wire and a chassis; and a controller controlling an operation of the power switch based on a measured insulation resistance measured by the insulation resistance measuring device. When the measured insulation resistance is equal to or less than a reference resistance, the controller enters a safe mode and the power switch is turned off to thereby block power supplied to the power load.