Abstract:
A latch system includes a releasably secured latch or keeper and a solenoid assembly. The solenoid assembly has a solenoid driver coupled to a power supply, a switching circuit connected with the solenoid driver, and a function generator to selectively adjust a frequency of a pick current output from the power supply and provided to the solenoid driver. The frequency is adjusted until the pick current induces a resulting vibration of said latch system sufficient to free a preloaded latch or keeper. The adjusted frequency may be a target frequency or a range of frequencies. Also included may be a preload sensor. When a preload is sensed, the frequency may be adjusted by the function generator until the pick current induces a resulting vibration of said latch system sufficient to free a preloaded latch or keeper.
Abstract:
An energizable electromagnet of a door locking system is affixed to the door or the door frame for electromagnetically attracting an armature affixed to the other. A power control circuit is configured to selectively energize the electromagnet using a pulse-width modulated current cycle wherein two levels of magnetic force may be selectively applied to the system. A door position sensor is configured to provide a first communication signal to the power control circuit when the door is in a closed position. A second communication signal is provided when the door is not in the closed position. The electromagnet is energized at the lower level of magnetic force when the power control circuit receives the first communication signal and at the higher level of magnetic force only when an unauthorized attempt to open the door is initiated.
Abstract:
A constant-current controller that supplies a constant-current to a solenoid driver for use with an electromechanical device. The controller comprises a PCB containing a constant-current control circuit. The circuit comprises a GaNFET primary switch and a secondary switch. The PCB is integrated with and made a part of the solenoid driver. A standard electromechanical device may be converted to a constant-current controlled electromechanical device by exchanging the solenoid driver.
Abstract:
A constant-current controller that supplies a constant current to an inductive load. This controller comprises an electric control circuit module. The electric control circuit module comprises a primary switch and a secondary switch. During a time interval in which the primary switch is closed (ton), the secondary switch is open and the voltage across the inductive load is equal to the source voltage (Vs). At time ton until the end of a time interval (T), zero volts appears across the inductive load. During this interval, current continues to flow as supplied by the energy stored in the inductance. The periodic current in the inductive load becomes constant with a sufficiently large PWM switching frequency and is dependent upon the parameters of the control circuit and the duration of ton.
Abstract:
A power control circuit assembly for an electric door lock comprises a load control circuit module configured to distribute a DC operating voltage to power an electromechanical door latch mechanism and its associated access control device. An energy storage device such as a rechargeable battery is coupled to the load control circuit module and is configured to deliver a DC voltage to the load control circuit module wherein the DC energy storage device voltage supplies the DC operating voltage. A rectifier is configured to receive an input AC voltage and convert the input AC voltage to an input DC voltage. The input DC voltage is adapted to deliver an energy storage device recharge voltage. An energy storage device voltage detection module is configured to interrogate a DC voltage supplied by the energy storage device.