Abstract:
The present invention relates to a transmitting device and a receiving device. The transmitting device (100) comprises: a processor (102), and a transmitter (104); wherein the processor (102) is configured to map a plurality of synchronization signal sequences to time and frequency resource elements of one Orthogonal Frequency Division Multiplex, OFDM, symbol, wherein the transmitter (104) is configured to transmit a multi-carrier signal comprising the one OFDM symbol. The receiving device (300) comprises: a processor (302), and a receiver (304); wherein the receiver (304) is configured to receive a multi-carrier signal comprising a OFDM symbol, wherein time and frequency resource elements of the OFDM symbol comprises a plurality of synchronization signal sequences, wherein the processor (302) is configured to detect the plurality of synchronization signal sequences comprised in the time and frequency resource elements of the OFDM symbol.
Abstract:
Embodiments of the present invention disclose a method and an apparatus for transmitting a synchronization signal. The method of the present invention includes: determining, by a first terminal, a D2D type, where the D2D type includes D2D discovery and D2D communication; and transmitting, by the first terminal, a synchronization signal according to the determined D2D type. Therefore, synchronization signals transmitted by terminals of different D2D types do not affect each other, avoiding that a second terminal detects and receives a synchronization signal that does not correspond to a D2D type of the second terminal and ensuring that user direct-connection communication can be performed correctly and efficiently.
Abstract:
A method is provided for arranging transmissions on a downlink carrier c, spanning a frequency range Fc, in a mobile radio communications system, wherein a bandwidth of Fc belongs to a set of predefined channel bandwidths in the communications system, and wherein the carrier c comprises a reference signal defined in the communications system. A configurable frequency range FRS comprising a set of time-frequency resources for comprising the reference signal of the carrier c is provided. Information associated with the configuration of said frequency range FRS is signaled to a receiver in the communications system, such that c can be deployed over a frequency range F smaller than Fc when the frequency range FRS is configured within F and any other transmissions on the carrier c are arranged to be within F.
Abstract:
The present disclosure relates to a method for facilitating synchronization in a wireless communication system. A number sequence of length L is defined. The number sequence is mapped on a first set of discrete Fourier frequency coefficients. A second set of discrete Fourier frequency coefficients is generated by frequency shifting the first set of discrete Fourier frequency coefficients. The second set of discrete Fourier frequency coefficients is transformed into a time domain signal.
Abstract:
Methods and apparatus are provided for facilitating synchronization between a base station (BS) and a user equipment (UE) in a mobile communication system. The UE receives a synchronization signal originated by the BS. The synchronization signal is encoded with a selected cyclically permutable (CP) codeword, the selected CP codeword being selected from a set of CP codewords. Encoding of the synchronization signal is facilitated by a repetitive cyclically permutable (RCP) codeword derivable from the selected CP codeword. The RCP codeword has a plurality of codeword elements each associated with a value, the value of at least one codeword element in the RCP codeword being repeated in another codeword element position in the RCP codeword. And the synchronization signal is decoded in accordance with repetitive structure of the RCP codeword.
Abstract:
The invention relates to a client device (100) and a network access node (300) for transmitting and receiving a random access preamble. The modulation sequence for the random access preamble is based on a first sequence and a second sequence. The first sequence is a sequence from a set of near-orthogonal sequences and the second sequence is a sequence from a set of constant envelope sequences. Due to its construction, the random access preamble herein provides low PAPR and suppresses the side-lobes in its auto-correlation function while producing a set of preambles with low cross-correlation. Furthermore, the invention also relates to corresponding methods and a computer program.
Abstract:
A transmitting device and a receiving device are described for a wireless communication system. The transmitting device transmits one or more synchronization signals on a carrier to at least one receiving device. A frequency of a synchronization signal among the one or more synchronization signals is located on a first frequency raster, and a carrier frequency of the carrier is deployed on a second frequency raster. The frequencies of two different synchronization signals among the one or more synchronization signals are located on different frequency positions in the first raster. The transmitting device transmits an indication of the carrier frequency to the at least one receiving device. The indication comprises at least one integer number. The receiving device derives the carrier frequency based on the at least one integer number.
Abstract:
A transmitting apparatus for a wireless communication system, where the wireless communication system includes an OFDM based waveform corresponding to a plurality of pre-defined subcarrier spacing values including at least a first subcarrier spacing value Δf1 and at least a second subcarrier spacing value Δf2. The transmitting apparatus includes a processor and a transmitter where the processor is configured to generate a signal S1 that is a NSF time repetition of an another signal S2. A duration of the another signal S2 is 1/Δf2, NSF=Δf2/Δf1 is an integer greater than 1, and the transmitter is configured to transmit a symbol comprising S1.
Abstract:
A transmitting device is provided. The transmitting device comprises a processor, and a transmitter; wherein the processor is configured to generate a fractional Orthogonal Frequency Division Multiplexing (OFDM) symbol based on an adjacent OFDM symbol, wherein the fractional OFDM symbol is a cyclic extension of the adjacent OFDM symbol; wherein the transmitter is configured to transmit a multicarrier signal comprising the fractional OFDM symbol and the adjacent OFDM symbol. Furthermore, the present invention also relates to a corresponding method, a multicarrier wireless communication system comprising such a transmitting device, a computer program, and a computer program product.
Abstract:
A transmitting device and a receiving device are provided. The transmitting device comprises a signal processor configured to modulate bits representing control information for providing at least a first set of modulation symbols and a second set of modulation symbols, provide a first set of mapped modulation symbols by mapping the first set of modulation symbols onto a set of frequency resources within a first sub-band, and provide a second set of mapped modulation symbols by mapping the second set of modulation symbols onto a corresponding set of frequency resources within a second sub-band, wherein the first set of mapped modulation symbols and the second set of mapped modulation symbols differ from each other in at least one modulation symbol, and wherein the first sub-band and the second sub-band are non-overlapping.