Abstract:
A first optical network device groups a plurality of FlexO instance frames into one group, where each of the plurality of FlexO instance frames carries one OTU signal; then, performs multiplexing on the plurality of FlexO instance frames grouped into one group, to generate one first FlexO frame; next, performing scrambling and FEC processing on the first FlexO frame to generate one second FlexO frame and send it to a second optical network device. If a rate of the FlexO instance frame is 100 Gbps and two FlexO instance frames are grouped into one group, the 200G optical module can be used in the transmission method.
Abstract:
Embodiments of the present invention provide a method and an apparatus for transmitting and receiving a client signal, and relate to the field of communications technologies. The method includes mapping the client signal into channels of a parallel transmission frame, where the parallel transmission frame includes at least two channels; adding an overhead for the channels of the parallel transmission frame after the mapping, to form transmission channels of the parallel transmission frame, where bit rates of the transmission channels of the parallel transmission frame are fixed; and modulating the transmission channels of the parallel transmission frame onto one or more optical carriers in a same optical fiber, and transmitting the optical carrier after the modulation.
Abstract:
The embodiments of the present disclosure relate to the field of communications technologies, and disclose a lossless adjustment method of ODUflex channel bandwidth and ODUflex channel. The lossless adjustment method includes: respectively adjusting, according to bandwidth adjustment indication request information, a time slot occupied by an ODUflex frame in a higher order optical channel data unit at an egress side of each network node on an ODUflex channel; and adjusting, according to rate adjustment indication information, a transmission rate of the ODUflex frame of each network node on the ODUflex channel, to enable the transmission rate of each network node on the ODUflex channel to be unified.
Abstract:
Embodiments of the present invention provide a signal processing method, a network apparatus, and a system. The method includes: mapping a received first client signal into a first ODUflex; mapping the first ODUflex into an optical channel data tributary unit (ODTUCn.X) including X tributary slots, where X is a non-integer; and multiplexing the ODTUCn.X into an optical channel payload unit (OPUCn). According to the signal processing method provided in the embodiments of the present invention, carrying efficiency can be improved when a fine-grained service is transmitted, and complexity is relatively low.
Abstract:
Embodiments of the present invention provide a method and an apparatus for transmitting and receiving a client signal in an optical transport network. In the transmission method, a received client signal is mapped into a variable-rate container OTU-N, wherein a rate of the OTU-N is N times as high as a preset reference rate; and then, the variable-rate container OTU-N is split into N optical sub-channel transport units OTUsubs by column, where a rate of each OTUsub equals to the reference rate; next, the N optical sub-channel transport units OTUsubs are modulated onto one or more optical carriers; at last, the one or more optical carriers is transmitted through a fiber.
Abstract:
The present invention provides a method, apparatus and system for transmitting and receiving a client signal. A client signal is mapped to a low-order ODU via a GFP scheme, wherein the low-order ODU is sized to M equal sized timeslots of a high-order OPUk, wherein the high-order OPUk is divided into N equal sized timeslots, wherein M is any one of a group from 1 to N; wherein if k=2, then N=8, if k=3, then N=32 and if k=4, then N=80. The low-order ODU with the client signal is mapped to M equal sized timeslots of the high-order OPUk via a GMP scheme; and an OTU with the high-order OPUk and overheads is formed, and then the OTU is transmitted.
Abstract:
An optical signal transmission method includes mapping a first optical data unit frame to a first flexible tributary unit frame, where the first flexible tributary unit frame includes a plurality of payload blocks; mapping the first flexible tributary unit frame to a first optical payload unit frame, where the plurality of payload blocks are distributed in a payload area of the first optical payload unit frame; mapping the first optical payload unit frame to a second optical data unit frame, where a bit rate of the second optical data unit frame is greater than a bit rate of the first optical data unit frame; mapping the second optical data unit frame to a first optical transport unit frame; and sending the first optical transport unit frame.
Abstract:
This application provides a data transmission method and apparatus. The method includes: processing, by a network device, a to-be-sent optical data unit ODU to obtain another ODU, where a bit rate of the another ODU is lower than a bit rate of the ODU; and sending, by the network device, the another ODU. In embodiments of this application, the ODU is processed to obtain the another ODU with a lower bit rate, and this helps reduce a rate increase when service data is transmitted in an OTN, so as to reduce an OTN interface rate and OTN costs.
Abstract:
A service processing method and apparatus and a device is disclosed. Synchronization headers of four 66b code blocks are removed, and a 1-bit code block type indication is added as control information of service data, to be encoded as a 257b code block. This avoids a bandwidth waste caused by the synchronization headers, and improves bandwidth utilization. When a 257b code block stream is mapped to an OSUflex frame, the code block type indication is mapped to an overhead area of the OSUflex frame, the four 66b code blocks from which the synchronization headers are removed are mapped to a payload area of the OSUflex frame, and check information obtained by checking the control information is mapped to the overhead area of the OSUflex frame, so that bit error protection is performed on the control information.
Abstract:
An embodiment method includes: mapping a to-be-transmitted optical channel unit signal of n times a benchmark rate to X first optical channel physical link signals; adding a link sequence indicator overhead to each of the X first optical channel physical link signals, to generate X second optical channel physical link signals; and modulating and sending the X second optical channel physical link signals by using X preset optical modules in a one-to-one manner. A rate of the first optical channel physical link signal is mi times the benchmark rate, n≥2, X≥2, mi≥1, and ∑ i = 1 X m i = n .