Abstract:
An improved autonegotiation approach includes determining that a negotiated rate between a first network device and a second network device exceeds data transfer capacity over a network path downstream of the second network device. In response, a configuration message is generated and transmitted to the first network device. When received by the first network device, the configuration message causes the first network device to limit data transfer between the first network device and the second network device to no more than the downstream data transfer capacity.
Abstract:
A system and method for performing rate adaptation of constant bit rate (CBR) client data for transmission over a Metro Transport Network (MTN) by defining a plurality of pseudo-Ethernet packets at a source node, assembling a plurality of Generic Mapping Procedure (GMP) frames by mapping a plurality of blocks from a stream of encoded blocks of CBR client data, a plurality of pad blocks, and GMP overhead into consecutive pseudo-Ethernet packets of the plurality of pseudo-Ethernet packets, inserting a fixed number of idle blocks between one or more of the consecutive pseudo-Ethernet packets and inserting an MTN path overhead (POH) frame that is aligned to the plurality of GMP frames to generate a plurality of rate adapted GMP frames for transmission over the MTN to an intermediate node or a sink node.
Abstract:
The present disclosure relates to communication methods, communications devices, and storage medium. In one example method, a port of a first device supports a flexible Ethernet protocol and a standard Ethernet protocol, and a protocol type supported by a port of a second device includes at least one of the flexible Ethernet protocol or the standard Ethernet protocol. The first device obtains the protocol type supported by the port of the second device, determines a target protocol type based on the protocol type supported by the port of the second device and a protocol type supported by the port of the first device, and communicates with the second device based on the target protocol type. The target protocol type includes the flexible Ethernet protocol or the standard Ethernet protocol.
Abstract:
A method for low-rate signal transmission on Optical Transport Networks is provided. In the method, a signal is mapped to a low-rate OPU of a low-rate ODU, wherein the low-rate ODU comprises an ODU overhead section and the low-rate OPU, the low-rate OPU comprises an OPU overhead section and an OPU payload section, the low-rate ODU has a bit rate of 1, 244, 160 Kbps±20 ppm, and the OPU payload section has a bit rate of 1, 238, 954.31 Kbps±20 ppm; OPU overhead bytes and ODU overhead bytes are added to corresponding overhead section; then, the low-rate ODU is multiplexed to an Optical channel Data Unit-k (ODUk) that has a bit rate higher than the bit rate of the low-rate ODU; finally, the ODUk is transmitted via the OTN.
Abstract:
A method and apparatus for controlling delay over a data path in a device for transporting Ethernet packets over an optical transport network. The device is configured to receive an incoming clock signal having a first frequency and an incoming data signal and to output an outgoing clock signal having a second frequency and an outgoing data signal. One or more delays over the data path in the device are measured in a predetermined measurement period. A phase adjustment amount is determined based on the one or more measured delays over the data path in the predetermined measurement period, and based on the determining phase adjustment amount, a phase of the outgoing clock signal is adjusted by a phase locked loop in such a way that the delay over the data path in the device is substantially equal to a fixed delay value.
Abstract:
Embodiments of the present disclosure disclose a method and an apparatus for bearing a flexible Ethernet service on an optical transport network (OTN). The method includes extracting a flexible Ethernet service from a flexible Ethernet service layer; performing data division on the flexible Ethernet service to obtain at least two data queues, where each data queue carries a queue identifier; mapping each data queue into an OTN container, where the OTN container includes an optical channel data unit-k (ODUk) container or an optical channel data unit flexible container; and sending the OTN containers to an OTN. By using the embodiments of the present disclosure, bandwidth utilization can be improved, and network construction costs of an OTN can be reduced.
Abstract:
Integrated performance monitoring (PM); optical layer operations, administration, maintenance, and provisioning (OAM&P); alarming; amplification, and the like is described in optical transceivers, such as multi-source agreement (MSA)-defined modules. A pluggable optical transceiver defined by an MSA agreement can include advanced integrated functions for carrier-grade operation which preserves the existing MSA specifications allowing the pluggable optical transceiver to operate with any compliant MSA host device with advanced features and functionality, such as Forward Error Correction (FEC), framing, and OAM&P directly on the pluggable optical transceiver. The advanced integrated can be implemented by the pluggable optical transceiver separate and independent from the host device.
Abstract:
Embodiments of the present invention provide a method and an apparatus for transmitting and receiving a client signal, and relate to the field of communications technologies. The method includes mapping the client signal into channels of a parallel transmission frame, where the parallel transmission frame includes at least two channels; adding an overhead for the channels of the parallel transmission frame after the mapping, to form transmission channels of the parallel transmission frame, where bit rates of the transmission channels of the parallel transmission frame are fixed; and modulating the transmission channels of the parallel transmission frame onto one or more optical carriers in a same optical fiber, and transmitting the optical carrier after the modulation.
Abstract:
A method of enabling transport of symmetric latency-sensitive constant-bit-rate (CBR) client data streams over an optical transport network (OTN) is provided. The method performs, utilizing an OTN wrapping device, an OTN wrapping operation on a received first constant-bit-rate (CBR) client data stream to form a first framed OTN data stream. The method determines a static wrapping delay induced on the first CBR client data stream by the OTN wrapping operation, performs, utilizing the OTN wrapping device, an OTN unwrapping operation on a received second framed OTN data stream to extract a second CBR client data stream from the second framed OTN data stream, determines a static unwrapping delay induced on the second framed OTN data stream by the OTN unwrapping operation, and equalizes the static wrapping and unwrapping delays by adjusting, at the OTN wrapping device, at least one of the static wrapping and unwrapping delays.
Abstract:
An Ethernet adapter system may include a transmitter to insert a payload type identifier sequence in a generic frame procedure header to indicate that a network is a converged enhanced Ethernet network. The transmitter may insert idle sequences in a stream of data frames transmitted along a link. The system may include a receiver to recognize a condition and to force a loss of synchronization condition on the link that will be converted by the receiver into a loss of light condition. The receiver may scan the transmitted stream of data frames for invalid data frames and introduce a code into the stream of data frames whenever an invalid data frame is detected.