-
公开(公告)号:US10921404B2
公开(公告)日:2021-02-16
申请号:US16840149
申请日:2020-04-03
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, Jr. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/38 , G01R33/385 , G01R33/383 , G01R33/44 , A61B50/13 , G01R33/389 , G01R33/421 , G01R33/56 , A61B5/055 , A61B6/00 , A61G13/10 , G01R33/34 , G01R33/48 , A61B90/00 , G01R33/3873 , G01R33/36 , G01R33/422
Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet, a plurality of gradient coils, and at least one radio frequency coil, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system.
-
公开(公告)号:US20200341085A1
公开(公告)日:2020-10-29
申请号:US16923892
申请日:2020-07-08
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, JR. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/38 , G01R33/34 , G01R33/385 , G01R33/383 , G01R33/565 , G01R33/36 , G01R33/44
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging. The magnetics system comprises a permanent B0 magnet configured to produce a B0 field for the magnetic resonance imaging system, and a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted magnetic resonance signals, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a base that supports the magnetics system and houses the power system, the base comprising at least one conveyance mechanism allowing the portable magnetic resonance imaging system to be transported to different locations. According to some aspects, the base has a maximum horizontal dimension of less than or equal to approximately 50 inches. According to some aspects, the portable magnetic resonance imaging system weighs less than 1,500 pounds. According to some aspects, the portable magnetic resonance imaging system has a 5-Gauss line that has a maximum dimension of less than or equal to five feet.
-
公开(公告)号:US10775454B2
公开(公告)日:2020-09-15
申请号:US16694233
申请日:2019-11-25
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, Jr. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/36 , G01R33/38 , G01R33/34 , G01R33/385 , G01R33/383 , G01R33/565 , G01R33/44 , G01R33/422 , G01R33/3873 , G01R33/381
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging. The magnetics system comprises a permanent B0 magnet configured to produce a B0 field for the magnetic resonance imaging system, and a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted magnetic resonance signals, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a base that supports the magnetics system and houses the power system, the base comprising at least one conveyance mechanism allowing the portable magnetic resonance imaging system to be transported to different locations. According to some aspects, the base has a maximum horizontal dimension of less than or equal to approximately 50 inches. According to some aspects, the portable magnetic resonance imaging system weighs less than 1,500 pounds. According to some aspects, the portable magnetic resonance imaging system has a 5-Gauss line that has a maximum dimension of less than or equal to five feet.
-
公开(公告)号:US10768255B2
公开(公告)日:2020-09-08
申请号:US14846158
申请日:2015-09-04
Applicant: Hyperfine Research, Inc.
Inventor: Jonathan M. Rothberg , Jeremy Christopher Jordan , Michael Stephen Poole , Laura Sacolick , Todd Rearick , Gregory L. Charvat
IPC: G01R33/54 , G01R33/56 , G01R33/36 , G01R33/38 , G01R33/34 , G01R33/385 , G01R33/28 , G01R33/565 , G01R33/44 , G01R33/58 , G01R33/48 , H01F7/02 , H01F7/06 , G01R33/381 , G01R33/383 , G01R33/3875 , G01R33/422
Abstract: In some aspects, a method of operating a magnetic resonance imaging system comprising a B0 magnet and at least one thermal management component configured to transfer heat away from the B0 magnet during operation is provided. The method comprises providing operating power to the B0 magnet, monitoring a temperature of the B0 magnet to determine a current temperature of the B0 magnet, and operating the at least one thermal management component at less than operational capacity in response to an occurrence of at least one event.
-
公开(公告)号:US10698050B2
公开(公告)日:2020-06-30
申请号:US15880482
申请日:2018-01-25
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, Jr. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/383 , G01R33/385 , G01R33/44 , A61B50/13 , G01R33/389 , G01R33/421 , G01R33/56 , G01R33/38 , A61B5/055 , A61B6/00 , A61G13/10 , G01R33/34 , G01R33/48 , A61B90/00 , G01R33/3873 , G01R33/36 , G01R33/422
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a B0 magnet configured to produce a B0 magnetic field for an imaging region of the magnetic resonance imaging system, a noise reduction system configured to detect and suppress at least some electromagnetic noise in an operating environment of the portable magnetic resonance imaging system, and electromagnetic shielding provided to attenuate at least some of the electromagnetic noise in the operating environment of the portable magnetic resonance imaging system, the electromagnetic shielding arranged to shield a fraction of the imaging region of the portable magnetic resonance imaging system. According to some aspects, the electromagnetic shield comprises at least one electromagnetic shield structure adjustably coupled to the housing to provide electromagnetic shielding for the imaging region in an amount that can be varied. According to some aspects, substantially no shielding of the imaging region of the portable magnetic resonance imaging system is provided.
-
公开(公告)号:US20200088817A1
公开(公告)日:2020-03-19
申请号:US16694233
申请日:2019-11-25
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, JR. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/38 , G01R33/565 , G01R33/36 , G01R33/44 , G01R33/34 , G01R33/385 , G01R33/383
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging. The magnetics system comprises a permanent B0 magnet configured to produce a B0 field for the magnetic resonance imaging system, and a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted magnetic resonance signals, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a base that supports the magnetics system and houses the power system, the base comprising at least one conveyance mechanism allowing the portable magnetic resonance imaging system to be transported to different locations. According to some aspects, the base has a maximum horizontal dimension of less than or equal to approximately 50 inches. According to some aspects, the portable magnetic resonance imaging system weighs less than 1,500 pounds. According to some aspects, the portable magnetic resonance imaging system has a 5-Gauss line that has a maximum dimension of less than or equal to five feet.
-
公开(公告)号:US20200025851A1
公开(公告)日:2020-01-23
申请号:US16583190
申请日:2019-09-25
Applicant: Hyperfine Research, Inc.
Inventor: Todd Rearick , Gregory L. Charvat , Matthew Scot Rosen , Jonathan M. Rothberg
IPC: G01R33/56 , G01R33/36 , G01R33/38 , G01R33/34 , G01R33/385 , G01R33/28 , G01R33/565 , G01R33/44 , G01R33/58 , G01R33/48 , H01F7/02 , H01F7/06 , G01R33/381 , G01R33/383 , G01R33/3875 , G01R33/54
Abstract: According to some aspects, a method of suppressing noise in an environment of a magnetic resonance imaging system is provided. The method comprising estimating a transfer function based on multiple calibration measurements obtained from the environment by at least one primary coil and at least one auxiliary sensor, respectively, estimating noise present in a magnetic resonance signal received by the at least one primary coil based at least in part on the transfer function, and suppressing noise in the magnetic resonance signal using the noise estimate.
-
公开(公告)号:US20200022612A1
公开(公告)日:2020-01-23
申请号:US16516760
申请日:2019-07-19
Applicant: Hyperfine Research, Inc.
Inventor: Christopher Thomas McNulty , Todd Rearick
IPC: A61B5/055
Abstract: According to some aspects, a bridge adapted for attachment to a magnetic resonance imaging system and configured to facilitate positioning a patient within the magnetic resonance imaging system is provided. Embodiments of the bridge comprise a support having a surface configured to support at least a portion of the patient, the support being moveable between an up position and a down position, wherein the surface is substantially vertical in the up position and substantially horizontal in the down position, a hinge configured to allow the support to be moved from the up position to the down position and vice versa, and a base configured to attach the bridge to the magnetic resonance imaging system. According to some aspects, a magnetic resonance imaging system is provided having a bridge configured to facilitate positioning a patient within the magnetic resonance imaging system attached thereto.
-
公开(公告)号:US20200018806A1
公开(公告)日:2020-01-16
申请号:US16583175
申请日:2019-09-25
Applicant: Hyperfine Research, Inc.
Inventor: Jonathan M. Rothberg , Matthew Scot Rosen , Gregory L. Charvat , William J. Mileski , Todd Rearick , Michael Stephen Poole , Keith G. Fife
IPC: G01R33/56 , G01R33/38 , G01R33/54 , G01R33/385 , G01R33/36 , G01R33/3875 , G01R33/383 , G01R33/381 , H01F7/06 , H01F7/02 , G01R33/48 , G01R33/58 , G01R33/44 , G01R33/565 , G01R33/28 , G01R33/34
Abstract: According to some aspects, a laminate panel is provided. The laminate panel comprises at least one laminate layer including at least one non-conductive layer and at least one conductive layer patterned to form at least a portion of a B0 coil configured to contribute to a B0 field suitable for use in low-field magnetic resonance imaging (MRI).
-
公开(公告)号:US10444310B2
公开(公告)日:2019-10-15
申请号:US16123989
申请日:2018-09-06
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, Jr. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/385 , G01R33/383 , G01R33/44 , G01R33/389 , G01R33/421 , G01R33/56 , G01R33/38 , A61B5/055 , A61B6/00 , A61G13/10 , G01R33/34 , G01R33/48 , A61B90/00 , A61B50/13 , G01R33/36 , G01R33/422 , G01R33/3873
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging. The magnetics system comprises a permanent B0 magnet configured to produce a B0 field for the magnetic resonance imaging system, and a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted magnetic resonance signals, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a base that supports the magnetics system and houses the power system, the base comprising at least one conveyance mechanism allowing the portable magnetic resonance imaging system to be transported to different locations. According to some aspects, the base has a maximum horizontal dimension of less than or equal to approximately 50 inches. According to some aspects, the portable magnetic resonance imaging system weighs less than 1,500 pounds. According to some aspects, the portable magnetic resonance imaging system has a 5-Gauss line that has a maximum dimension of less than or equal to five feet.
-
-
-
-
-
-
-
-
-