摘要:
Provided are a Radio Frequency Identification (RFID) tag and apparatus and method for locating a RFID tag without comparing arrival times of blink signals transmitted from the RFID tag in order to quickly trace a location of the RFID tag. The RFID tag includes a tag ID generator configured to generate a tag ID of the RFID tag, a blink generator configured to generate a plurality of sub-blink signals that form the blink signal, a sub-blink ID generator configured to generate sub-blink IDs for the generated sub-blink signals, a sub-blink ID inserter configured to insert the generated sub-blink IDs into the sub-blink signals, and a transmitter configured to transmit the blink signal having the tag ID and the sub-blink IDs.
摘要:
Provided is an apparatus and method for transmitting packet data in a WSN. The apparatus for transmitting packet data in a WSN includes: a serial-to-parallel converter to parallel-convert information and output the converted information to two channel paths; a Walsh code pair generation unit to select an arbitrary Walsh code pair, mix the selected Walsh code pair with a pseudo noise (PN) code, and output one Walsh code to one channel path and the other Walsh code to the other channel path; a first mixer to mix the signals inputted to two channel paths, and generate a spread symbol for each path; a delay to delay the other channel path signal by a predetermined time; and a transmission unit to convert one channel path signal and the other channel path signal delayed by the delay into transmission frequency band signals, and transmit the converted signals as wireless signals.
摘要:
Provided are an RFID reader and a method for controlling a gain thereof. The RFID reader includes an amplifier and an AGC circuit. The amplifier controls the gain of an RX signal, received from an RFID tag, in response to an AGC signal. The AGC circuit measures a signal level in an ante-preamble period of the RX signal and generates an AGC signal to control the gain of the RX signal, on the basis of the measured signal level.
摘要:
Provided is a method for determining superframe to efficiently perform beacon scheduling by allocating superframe lengths which are different according to a routing depth of sensor nodes in a ZigBee based wireless sensor network. The method for determining a superframe for beacon scheduling, includes the steps of: receiving a beacon from a neighboring node and grasping information on a superframe used by the neighboring nodes; and determining a transmission time and a length of own superframe based on superframe information of the grasped neighboring node.
摘要:
A passive tag including a volatile memory is provided. The passive tag includes: a sensing unit which senses or measures information about environmental surroundings of the tag; a volatile memory; a non-volatile memory; and a control unit which firstly stores resultant data sensed or measured by the sensing unit in the volatile memory and then moves the data stored in the volatile memory to the non-volatile memory according to pre-set conditions. Therefore, the life of the tag is prolonged and stability of important data can be secured.
摘要:
Provided is an apparatus and method of dynamically managing a sensor module on a sensor node in a wireless sensor network. The apparatus includes an update unit, a request unit, and a transmission unit. If a change occurs in sensor data corresponding to each sensor node stored in a sensor information storage server, the update unit receives the sensor data from the sensor information storage server, and transmits the received sensor data to the corresponding sensor node. The request unit requests the sensor data from the sensor information storage server upon receipt of a sensor data request message from the sensor node. The transmission unit receives the requested sensor data from the sensor information storage server and transmits the received sensor data to the sensor node.
摘要:
Provided are a method and apparatus for transmitting a sensor status of a radio frequency identification (RFID) tag. The method and apparatus transmit an RFID tag identifier (ID) together with sensor data or sensor status information to an RFID reader, thereby enabling the RFID reader to receive the sensor status information about the RFID tag without additionally communicating with the RFID tag.
摘要:
Provided is an antenna for a Radio Frequency Identification (RFID) reader using an electrical loop. It includes an upper metal plate which functions as a radiator; a lower metal plate which is disposed apart from the upper metal plate by a predetermined distance and functions as a radiator; a ground plate disposed apart from the lower metal plate by a predetermined distance; and a feeding probe disposed at the center of the upper and lower metal plates. The antenna can perform radiation parallel to the earth's surface including other directions. Therefore, it is suitable for an RFID reader which recognizes an RFID tag attached in parallel to the earth's surface. The electrical loop antenna can control impedance matching, resonance frequency, antenna gain, and radiation pattern according to the distance between metal plates, size of the metal plates, thickness of a feeding probe, and how the metal plates are arranged.
摘要:
An apparatus and method for managing power of a radio frequency identification (RFID) tag are provided. It is possible for the apparatus for managing the power of the RFID tag to effectively reduce power consumption of the RFID tag by measuring the power strength of a radio frequency (RF) signal received from an RFID reader and adjusting a level of transmission power based on the measured power strength of the signal.
摘要:
Provided are a localization apparatus for recognizing a location of a node in a sensor network and a method thereof. The method includes the steps of: a) selecting reference nodes from a plurality of anchor nodes to be used for triangulation; and b) obtaining location information of a target node by performing triangulation using the selected reference node, wherein in the step a), the reference nodes are selected by removing anchor nodes having obstacle factor from a plurality of the anchor nodes where the obstacle factor causes error in a distance measured by the target node.