Abstract:
A pharmaceutical composition contains an antibody or a fragment thereof specific for COL6A3 for the treatment of a cancer. A method of treating a cancer includes administering to a subject in need thereof the pharmaceutical composition. A kit includes a container that contains the pharmaceutical composition. A method of producing an antibody or a fragment thereof against a peptide or a MHC/peptide complex. A method for detecting a diseased tissue includes administering to a subject in need thereof an antibody or a fragment thereof conjugated to a radioisotope and detecting a signal from the radioisotope in the subject. A method for treating a diseased tissue includes administering to a subject in need thereof an antibody or a fragment thereof conjugated to a toxin.
Abstract:
The present invention pertains to antigen recognizing constructs against COL6A3 antigens. The invention in particular provides novel T cell receptor (TCR) based molecules which are selective and specific for the tumor expressed antigen COL6A3. The TCR of the invention, and COL6A3 antigen binding fragments derived therefrom, are of use for the diagnosis, treatment and prevention of COL6A3 expressing cancerous diseases. Further provided are nucleic acids encoding the antigen recognizing constructs of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen recognizing constructs and pharmaceutical compositions comprising the compounds of the invention.
Abstract:
The present invention pertains to antigen recognizing constructs against COL6A3 antigens. The invention in particular provides novel T cell receptor (TCR) based molecules which are selective and specific for the tumor expressed antigen COL6A3. The TCR of the invention, and COL6A3 antigen binding fragments derived therefrom, are of use for the diagnosis, treatment and prevention of COL6A3 expressing cancerous diseases. Further provided are nucleic acids encoding the antigen recognizing constructs of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen recognizing constructs and pharmaceutical compositions comprising the compounds of the invention.
Abstract:
A method of treating a patient who has non-small cell lung carcinoma (NSCLC), lung cancer, gastric cancer, and/or glioblastoma includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide. A pharmaceutical composition contains activated T cells that selectively recognize cells in a patient that aberrantly express a peptide, and a pharmaceutically acceptable carrier, in which the T cells bind to the peptide in a complex with an MHC class I molecule, and the composition is for treating the patient who has NSCLC, lung cancer, gastric cancer, and/or glioblastoma. A method of treating a patient who has NSCLC, lung cancer, gastric cancer, and/or glioblastoma includes administering to said patient a composition comprising a peptide in the form of a pharmaceutically acceptable salt, thereby inducing a T-cell response to the NSCLC, lung cancer, gastric cancer, and/or glioblastoma.
Abstract:
The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to 30 peptide sequences and their variants derived from HLA class I and class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
Abstract:
The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumour-associated T-helper cell peptide epitopes, alone or in combination with other tumour-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions which stimulate anti-tumour immune responses. The present invention relates to novel peptide sequences and their variants derived from HLA class I and class II molecules of human tumour cells which can be used in vaccine compositions for eliciting anti-tumour immune responses.
Abstract:
The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to peptide sequences and their variants derived from HLA class I and class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
Abstract:
A method of treating a patient who has glioblastoma and/or gastric cancer includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide. A pharmaceutical composition contains activated T cells that selectively recognize cells in a patient that aberrantly express a peptide, and a pharmaceutically acceptable carrier, in which the T cells bind to the peptide in a complex with an MHC class I molecule, and the composition is for treating the patient who has glioblastoma and/or gastric cancer. A method of treating a patient who has glioblastoma and/or gastric cancer includes administering to said patient a composition comprising a peptide in the form of a pharmaceutically acceptable salt, thereby inducing a T-cell response to the glioblastoma and/or gastric cancer.
Abstract:
The present invention relates to a method for selecting an immune cell expressing on its surface an antigen-binding protein specifically binding to a complex of a peptide A (PA) and a Major Histocompatibility Complex (MHC) molecule, comprising the steps of (i) providing a plurality of immune cells expressing different antigen-binding proteins; (ii) contacting the plurality of immune cells with a first composition comprising a complex 1A, comprising a MHC molecule 1 (M1) and a peptide A (PA), and a complex 1X, comprising M1 and a peptide B (PB); (iii) contacting the plurality of immune cells with a second composition comprising a complex 2A, comprising a MHC molecule 2 (M2) and PA, and a complex 2X, comprising M2 and a peptide C (PC); (iv) selecting from the plurality of immune cells a cell expressing an antigen binding protein that specifically binds to complex 1A, wherein complexes 1X and 2X, but not 1A and 2A, dissociate upon stimulation with a defined chemical or physical stimulus; and wherein the amino acid sequences of PB and PC differ in at least one amino acid. The invention further relates to an immune cell selected by the method according to the invention, a method of treatment using said immune cell, a kit for selecting a cell expressing on its surface an antigen-binding protein, and a peptide suitable for use in the method according to the invention.
Abstract:
The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to peptide sequences and their variants derived from HLA class I and class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.