APPARATUS AND METHODS FOR THREE-DIMENSIONAL POSE ESTIMATION

    公开(公告)号:US20230298204A1

    公开(公告)日:2023-09-21

    申请号:US18000389

    申请日:2020-06-26

    Abstract: Apparatus and methods for three-dimensional pose estimation are disclosed herein. An example apparatus includes an image synchronizer to synchronize a first image generated by a first image capture device and a second image generated by a second image capture device, the first image and the second image including a subject; a two-dimensional pose detector to predict first positions of keypoints of the subject based on the first image and by executing a first neural network model to generate first two-dimensional data and predict second positions of the keypoints based on the second image and by executing the first neural network model to generate second two-dimensional data; and a three-dimensional pose calculator to generate a three-dimensional graphical model representing a pose of the subject in the first image and the second image based on the first two-dimensional data, the second two-dimensional data, and by executing a second neural network model.

    METHODS AND SYSTEMS FOR BUDGETED AND SIMPLIFIED TRAINING OF DEEP NEURAL NETWORKS

    公开(公告)号:US20220222492A1

    公开(公告)日:2022-07-14

    申请号:US17584216

    申请日:2022-01-25

    Abstract: Methods and systems for budgeted and simplified training of deep neural networks (DNNs) are disclosed. In one example, a trainer is to train a DNN using a plurality of training sub-images derived from a down-sampled training image. A tester is to test the trained DNN using a plurality of testing sub-images derived from a down-sampled testing image. In another example, in a recurrent deep Q-network (RDQN) having a local attention mechanism located between a convolutional neural network (CNN) and a long-short time memory (LSTM), a plurality of feature maps are generated by the CNN from an input image. Hard-attention is applied by the local attention mechanism to the generated plurality of feature maps by selecting a subset of the generated feature maps. Soft attention is applied by the local attention mechanism to the selected subset of generated feature maps by providing weights to the selected subset of generated feature maps in obtaining weighted feature maps. The weighted feature maps are stored in the LSTM. A Q value is calculated for different actions based on the weighted feature maps stored in the LSTM.

    Methods and systems for budgeted and simplified training of deep neural networks

    公开(公告)号:US11263490B2

    公开(公告)日:2022-03-01

    申请号:US16475078

    申请日:2017-04-07

    Abstract: Methods and systems for budgeted and simplified training of deep neural networks (DNNs) are disclosed. In one example, a trainer is to train a DNN using a plurality of training sub-images derived from a down-sampled training image. A tester is to test the trained DNN using a plurality of testing sub-images derived from a down-sampled testing image. In another example, in a recurrent deep Q-network (RDQN) having a local attention mechanism located between a convolutional neural network (CNN) and a long-short time memory (LSTM), a plurality of feature maps are generated by the CNN from an input image. Hard-attention is applied by the local attention mechanism to the generated plurality of feature maps by selecting a subset of the generated feature maps. Soft attention is applied by the local attention mechanism to the selected subset of generated feature maps by providing weights to the selected subset of generated feature maps in obtaining weighted feature maps. The weighted feature maps are stored in the LSTM. A Q value is calculated for different actions based on the weighted feature maps stored in the LSTM.

    Dynamic emotion recognition in unconstrained scenarios

    公开(公告)号:US11151361B2

    公开(公告)日:2021-10-19

    申请号:US16471106

    申请日:2017-01-20

    Abstract: An apparatus for dynamic emotion recognition in unconstrained scenarios is described herein. The apparatus comprises a controller to pre-process image data and a phase-convolution mechanism to build lower levels of a CNN such that the filters form pairs in phase. The apparatus also comprises a phase-residual mechanism configured to build middle layers of the CNN via plurality of residual functions and an inception-residual mechanism to build top layers of the CNN by introducing multi-scale feature extraction. Further, the apparatus comprises a fully connected mechanism to classify extracted features.

Patent Agency Ranking