METHODS AND SYSTEMS FOR BUDGETED AND SIMPLIFIED TRAINING OF DEEP NEURAL NETWORKS

    公开(公告)号:US20220222492A1

    公开(公告)日:2022-07-14

    申请号:US17584216

    申请日:2022-01-25

    Abstract: Methods and systems for budgeted and simplified training of deep neural networks (DNNs) are disclosed. In one example, a trainer is to train a DNN using a plurality of training sub-images derived from a down-sampled training image. A tester is to test the trained DNN using a plurality of testing sub-images derived from a down-sampled testing image. In another example, in a recurrent deep Q-network (RDQN) having a local attention mechanism located between a convolutional neural network (CNN) and a long-short time memory (LSTM), a plurality of feature maps are generated by the CNN from an input image. Hard-attention is applied by the local attention mechanism to the generated plurality of feature maps by selecting a subset of the generated feature maps. Soft attention is applied by the local attention mechanism to the selected subset of generated feature maps by providing weights to the selected subset of generated feature maps in obtaining weighted feature maps. The weighted feature maps are stored in the LSTM. A Q value is calculated for different actions based on the weighted feature maps stored in the LSTM.

    Methods and systems for budgeted and simplified training of deep neural networks

    公开(公告)号:US11263490B2

    公开(公告)日:2022-03-01

    申请号:US16475078

    申请日:2017-04-07

    Abstract: Methods and systems for budgeted and simplified training of deep neural networks (DNNs) are disclosed. In one example, a trainer is to train a DNN using a plurality of training sub-images derived from a down-sampled training image. A tester is to test the trained DNN using a plurality of testing sub-images derived from a down-sampled testing image. In another example, in a recurrent deep Q-network (RDQN) having a local attention mechanism located between a convolutional neural network (CNN) and a long-short time memory (LSTM), a plurality of feature maps are generated by the CNN from an input image. Hard-attention is applied by the local attention mechanism to the generated plurality of feature maps by selecting a subset of the generated feature maps. Soft attention is applied by the local attention mechanism to the selected subset of generated feature maps by providing weights to the selected subset of generated feature maps in obtaining weighted feature maps. The weighted feature maps are stored in the LSTM. A Q value is calculated for different actions based on the weighted feature maps stored in the LSTM.

    Skin map-aided skin smoothing of images using a bilateral filter

    公开(公告)号:US11176641B2

    公开(公告)日:2021-11-16

    申请号:US16079308

    申请日:2016-03-24

    Abstract: Skin smoothing is applied to images using a bilateral filter and aided by a skin map. In one example a method includes receiving an image having pixels at an original resolution. The image is buffered. The image is downscaled from the original resolution to a lower resolution. A bilateral filter is applied to pixels of the downscaled image. The filtered pixels of the downscaled image are blended with pixels of the image having the original resolution, and the blended image is produced.

Patent Agency Ranking