Abstract:
A method of Automatic Gain Control (AGC) gain adjustment by a wireless device, including receiving a reference signal and data from a secondary cell operating in unlicensed spectrum; and adjusting the AGC gain for the secondary cell based on the reference signal, which is received in a same measurement timing configuration period as the data. Further, a method of AGC gain adjustment including receiving a primary reference signal from a primary cell operating in licensed spectrum; and adjusting the AGC gain for a secondary cell operating in unlicensed spectrum based on the primary reference signal and at least one of a transmission power difference, a reception power difference, and a propagation path loss difference between the primary cell and the secondary cell.
Abstract:
In an embodiment, an apparatus to be employed in a user equipment (UE) is described. The apparatus includes configuration circuitry operable to determine, based on one or more configuration information messages, a measurement gap for a master evolved Node B (MeNB) that is operable to provide a master cell group (MCG) that is asynchronous with a secondary cell group (SCG) of a secondary evolved Node B (SeNB), wherein subframe boundaries of the MCG are different from subframe boundaries of the SCG; and radio frequency (RF) control circuitry operable to cause RF circuitry to be tuned, at a beginning of the measurement gap based on a subframe boundary of the MCG, to start inter-frequency measurements, wherein the RF circuitry is to be used to transmit or receive data in a serving cell of the MCG and in a serving cell of the SCG. Other embodiments are also described and claimed.
Abstract:
Systems and methods for signaling in an increased carrier monitoring wireless communication environment are disclosed herein. In some embodiments, a user equipment (UE) may include control circuitry to configure the UE for increased carrier monitoring; determine, based on a first signal received from a network apparatus, whether a reduced performance group carrier is configured; determine, based on a second signal received from the network apparatus, whether a scaling factor is configured; and in response to a determination that no reduced performance group carrier is configured and a determination that no scaling factor is configured, allow the UE to monitor fewer carriers than required by increased carrier monitoring. Other embodiments may be disclosed and/or claimed.
Abstract:
A method of Automatic Gain Control (AGC) gain adjustment by a wireless device, including receiving a reference signal and data from a secondary cell operating in unlicensed spectrum; and adjusting the AGC gain for the secondary cell based on the reference signal, which is received in a same measurement timing configuration period as the data. Further, a method of AGC gain adjustment including receiving a primary reference signal from a primary cell operating in licensed spectrum; and adjusting the AGC gain for a secondary cell operating in unlicensed spectrum based on the primary reference signal and at least one of a transmission power difference, a reception power difference, and a propagation path loss difference between the primary cell and the secondary cell.
Abstract:
Systems and methods to support intra-application flow prioritization are disclosed herein. User equipment (UE) may be configured to communicatively couple to an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB). The eNB may be able to quickly change a time division duplexing (TDD) schedule based on the experienced traffic. The eNB may indicate which subframes the UE should monitor for the TDD schedule. The indication may be a bitmap, a code, etc. The bitmap and/or code may be shortened by restricting in which frames and/or subframes the TDD schedule can be transmitted. The UE may monitor the subframes and receive the TDD schedule. The UE may determine a delay before the TDD schedule should be applied. The delay may be determined based on the subframe in which the TDD schedule was received.
Abstract:
An apparatus of an evolved NodeB (eNB) comprises one or more baseband processors to encode measurement gap configuration information including a measurement gap configuration information element MeasGapConfig to configure a network controlled small gap (NCSG) pattern for a user equipment (UE) device if the UE requires an NCSG and the UE is not configured with a primary secondary cell (PSCELL), and a memory to store the measurement gap configuration information.
Abstract:
Systems and methods are provided for a network to indicate beamforming information to user equipment (UE) for identification and measurement of reference signals. For example, a network may indicate whether all the reference signals are beamformed or not, or which reference signals are using the same transmission beamforming on the time domain, the frequency domain, or both time and frequency domains. In other embodiments, a network may indicate combining or averaging information to a UE.
Abstract:
In embodiments, a UE may measure system frame number (SFN)/subframe timing differences between a master eNB (MeNB) and secondary eNB (SeNB) for dual connectivity (DC). When network-based reporting on the SFN/subframe timing offset is used, no new radio access network (RAN) signaling may be needed. However, in the case of multi-vendor deployments, no network coordination via different Operations, Administration, and Maintenance (OAM) for DC may occur. In this case, the network may not be able to obtain SFN/subframe timing offset information. To address this issue, various embodiments disclosed herein include UE-based reporting on SFN/subframe offset between an MeNB and an SeNB.
Abstract:
An apparatus of a base station, comprising: a controller to configure a first measurement gap pattern with a first measurement gap repetition period (MGRP) for a first receive (Rx) chain of a user equipment (UE); and configure a second measurement gap pattern with a second measurement gap repetition period (MGRP) for a second receive (Rx) chain of the UE, wherein the first MGRP is different from the second MGRP. The apparatus may configure the measurement gap patterns to support carrier aggregation and/or dual connectivity.
Abstract:
An embodiment for user equipment that receives a plurality of measurement gap repetition patterns from a network. Each measurement gap repetition pattern may be assigned to a different frequency of the network. The plurality of measurement gap repetition patterns may include skipping measurement patterns. Further embodiments may include the user equipment receiving a repetition period in a measurement object frame or receiving a plurality of measurement gap repetition patterns in which the measurement gaps are non-colliding with measurement gaps of other repetition patterns assigned to the user equipment.