Abstract:
A method for training a machine learning system using conditionally independent training data includes receiving an input dataset (p(x, y, z)). A generative adversarial network, that includes a generator and a first discriminator, uses the input dataset to generate a training data (ps (xf, yf, zf)) by generating the values (xf, yf, zf). The first discriminator determines a first loss (L1) based on (xf, yf, zf) and (x, y, z). A divergence calculator modifies the training data based on a dependence measure (γ). The divergence calculator includes a second discriminator and a third discriminator. Modifying the training data includes receiving a reference value ({tilde over (y)}), and computing, by the second discriminator, a second loss (L2) based on (xf, yf, zf) and (xf, {tilde over (y)}, zf). The third discriminator computes a third loss (L3) based on (yf, zf) and ({tilde over (y)}, zf). Further, a fourth loss (L4) is computed based on L2 and L3. The training data is output from the generator if L1 and L4 satisfy a predetermined condition.
Abstract:
Define a similarity measure between first and second points in a data space by operation of a machine learning model. Generate interpretable representations of the first and second points. Generate an interpretable local description of the similarity measure by approximating the similarity measure as a distance between the interpretable representations of the first and second points. The distance between the interpretable representations incorporates a matrix. Learn values for the matrix through optimizing a loss function evaluated on perturbations of the first and second points. Explain a value of the similarity measure between the first and second points using elements of the matrix. Assess the explanation of the value of the similarity measure using a rubric. In response to the assessment of the explanation of the value of the similarity measure, modify the machine learning model. Deploy the modified machine learning model.
Abstract:
A method of utilizing a computing device to correct source data used in machine learning includes receiving, by the computing device, first data. The computing device corrects the source data via an application of a covariate shift to the source data based upon the first data where the covariate shift re-weighs the source data.
Abstract:
Modularized data processing systems and methods for its use are provided. Processing a current job can reuse data generated for a previously processed job to the extent the two share parameter configurations. Similarly, outputs of processing modules generated during processing the previously processed job can be used as inputs to processing modules processing a current job, if the two jobs share some parameter configurations.
Abstract:
A method, system and apparatus of using a computing device to explain one or more predictions of a machine learning model including receiving by a computing device a pre-trained artificial intelligence model with one or more predictions, generating by the computing device a multilevel explanation tree, linking neighborhood of datapoints around each of a plurality of training datapoints to the one or more predictions, and utilizing by the computing device the multilevel explanation tree to explain one or more predictions of the machine learning model.
Abstract:
A method and system of stitching a plurality of image views of a scene, including grouping matched points of interest in a plurality of groups, and determining a similarity transformation with smallest rotation angle for each grouping of the matched points. The method further includes generating virtual matching points on non-overlapping area of the plurality of image views and generating virtual matching points on overlapping area for each of the plurality of image views.
Abstract:
A method and a system of stitching a plurality of views of a scene, the method including extracting points of interest in each view to include a point set from each of the plurality of image views of the scene, matching the points of interest and reducing an outlier, grouping the matched points of interest in a plurality of groups, determining a similarity transformation with a smallest rotation angle for each grouping of the match points, generating virtual matching points on a non-overlapping area of the plurality of image views, generating virtual matching points on an overlapping area for each of the plurality of image views, and calculating piecewise projective transformations for the plurality of image views.
Abstract:
Exemplary embodiments of the present invention provide a method of health insurance market risk assessment including receiving first data including demographic and cost data for members of a health insurance plan in a current market, receiving second data including demographic data for the current market, and receiving third data including demographic data for a new market. The first to third data are used to transform a distribution of the plan members to account for differences between the current and new market demographic data and to estimate probabilities of enrollment in the new market. A statistical model is learned to predict risk in the new market using the transformed distribution and the estimated probabilities. The statistical model is used to determine risk of entering the new market.