Abstract:
A decoder for a modulation scheme is configured to operate close to the radio noise floor. A correlation value may be constantly updated, in an effort to match to a signature to a preamble of a packet. A low clamp value may act as a floor to which a calculated correlation value is set, if it is less than the low clamp value. If a correlation threshold is exceeded, then the correlation value is examined to determine it is a peak value. If the peak is found, power of the preamble is compared to a power threshold that is relative to the radio noise floor. If the power threshold is exceeded, positive correlation is detected. A channel optimizer is used to remove the frequency misalignment. This enables the use of a filter that is approximately equal to the occupied bandwidth of the incoming signal, further rejecting noise and interference.
Abstract:
A multichannel radio receiver may include a radio frequency (RF) subsystem and a digital subsystem. The digital subsystem may be configured to use an analog to digital converter (ADC) to sample input. A channelizer bank within the digital subsystem may include a plurality of channelizers. Each channelizer may receive and translate input into a plurality of channels, the channels having widths that are non-uniform and/or spacing (e.g., spacing center-to-center of adjacent channels) that is not regular. The translation may include re-sampling channels at a rate associated with a modulation scheme. A decoder bank may include a plurality of decoders operating in parallel, each to receive input from a channelizer and each associated with a particular modulation scheme. Thus, the multichannel radio may simultaneously receive on a plurality of channels of arbitrary location, arbitrary spacing and/or arbitrary bandwidth, wherein each channel is associated with one of a plurality of modulation schemes.
Abstract:
A radio may define a channel plan to include one or more channels, and each channel may include a plurality of overlapping filters. Each filter may overlap at least one other filter, such as by an expected bandwidth of an incoming signal. The overlapping filters may extend over a frequency range based in part on an expected frequency error of the incoming signal. Due in part to the overlapping nature of the filters, the incoming signal will be within at least one of the filters. Since only one of the filters must receive the incoming signal, the filters may be narrower than might otherwise be the case, particularly in an application that includes frequency error. Accordingly, the filters may be narrower than their respective channels, and therefore receive less noise and interference. This improves signal-to-noise and improves the quality of the link and range.
Abstract:
A multichannel radio receiver may include a radio frequency (RF) subsystem and a digital subsystem. The RF subsystem may be configured to provide analog information associated with a radio band to an analog to digital converter (ADC). The ADC samples the analog input and sends digital output to the digital subsystem. The digital subsystem may be configured with one or more channelizers and one or more decoders. A channelizer within the digital subsystem may filter and re-sample the digital output to result in a channel plan having a desired bandwidth and a desired sample rate. The sample rate may be selected for compatibility with a decoder. The decoder may have design specifications based in part on a modulation scheme to be decoded. The design specifications may indicate the desired sample rate to be provided by the channelizer.
Abstract:
A multichannel radio receiver configured for real-time radio channel assessment is described herein. In one example, a radio frequency (RF) front end provides a frequency spectrum which is converted into a digitized spectrum. Within a digital subsystem, resources (e.g., software or a hardware device) may analyze channels or portions of spectrum within the digitized spectrum for a packet error rate (PER) at a plurality of power levels and a plurality of modulation schemes. The analysis may result a required received signal strength indicator (RSSI) that is needed to result in a particular read reliability requirement (RRR). Using the required RSSI, endpoints communicating with the multichannel radio may be associated with a channel(s), modulation scheme(s) and/or power level(s) that results in the RRR. The analysis may be performed by one or more resources operating in parallel and operating in the background to other communications between the endpoints and multichannel radio receiver.