摘要:
An example method of receiving a data packet includes receiving a data packet at a channel receiver of at least one channel receiver each associated with a channel, providing the data packet to a data packet identification block that corresponds to the channel receiver, validating the data packet at the data packet identification block, and providing the validated data packet to an available decoder block of at least one decoder block capable of performing one or more decoding functions, where a quantity of the decoder blocks is less than a quantity of the data packet identification blocks and optimized according to one or more goals. If no decoder block is available and the validated data packet is a higher priority data packet, a decoder block processing a lower priority data packet may be forced to stop processing the lower priority data packet and process the higher priority data packet.
摘要:
A multichannel radio receiver configured for real-time radio channel assessment is described herein. In one example, a radio frequency (RF) front end provides a frequency spectrum which is converted into a digitized spectrum. Within a digital subsystem, resources (e.g., software or a hardware device) may analyze channels or portions of spectrum within the digitized spectrum for a packet error rate (PER) at a plurality of power levels and a plurality of modulation schemes. The analysis may result a required received signal strength indicator (RSSI) that is needed to result in a particular read reliability requirement (RRR). Using the required RSSI, endpoints communicating with the multichannel radio may be associated with a channel(s), modulation scheme(s) and/or power level(s) that results in the RRR. The analysis may be performed by one or more resources operating in parallel and operating in the background to other communications between the endpoints and multichannel radio receiver.
摘要:
A decoder for a modulation scheme is configured to operate close to the radio noise floor. A correlation value may be constantly updated, in an effort to match to a signature to a preamble of a packet. A low clamp value may act as a floor to which a calculated correlation value is set, if it is less than the low clamp value. If a correlation threshold is exceeded, then the correlation value is examined to determine it is a peak value. If the peak is found, power of the preamble is compared to a power threshold that is relative to the radio noise floor. If the power threshold is exceeded, positive correlation is detected. A channel optimizer is used to remove the frequency misalignment. This enables the use of a filter that is approximately equal to the occupied bandwidth of the incoming signal, further rejecting noise and interference.
摘要:
Within a radio, a broadband digitizer is configured for channel assessment. In an example, a radio band is digitized to form a data stream. The data stream is channelized to form first and second in-phase in-quadrature (I/Q) sample streams. The first and second I/Q sample streams are provided to first and second channel assessors, respectively. Additionally, the first and second I/Q sample streams are bifurcated, to thereby provide the same first and second I/Q streams to first and second channel decoders, respectively. Accordingly, same portions of the first and second I/Q sample streams are presented to the first and second channel assessors and the first and second decoders, respectively, at the same time. Based at least in part on the channel assessments made by the channel assessors, a channel plan with less radio frequency noise may be selected.
摘要:
Channel plan management enables a radio to select preferred channels within a potentially noisy radio frequency (RF) spectrum. In an example of RF spectrum analysis and channel plan management, a channel assessment tool analyzes RF spectrum, builds and maintains a database that include RF spectrum and/or channel information. In an example, a channel assessment tool (CAT) manager periodically collects the data from packet error rate (PER) estimators and resets them for a new collection interval. The CAT manager builds a statistical database for all channels. This database is used to identify the best channels over that collection period, which is then ultimately used to build a new channel plan. The CAT statistical database to generate a new active channel plan which is ultimately updated across many or all devices within a radio network.
摘要:
In a radio using a plurality of channels defined in a radio frequency (RF) spectrum, a rate of false packet detections may be calculated for each of the plurality of channels using a plurality of respective correlation thresholds. The rate of false packet detections for each channel may be compared to a range of acceptable rates of false packet detections. The same or different ranges of acceptable rates of false packet detections may be used for each channel or each channel plan. Different correlation thresholds may be adjusted based at least in part on the comparisons. For example, if a rate of false packet detections exceeds a range of acceptable rates of false packet detections, the correlation threshold may be raised, or the reverse. A packet may be detected on different channels based on different adjusted correlation thresholds.
摘要:
An example method of receiving a data packet includes receiving a data packet at a channel receiver of at least one channel receiver each associated with a channel, providing the data packet to a data packet identification block that corresponds to the channel receiver, validating the data packet at the data packet identification block, and providing the validated data packet to an available decoder block of at least one decoder block capable of performing one or more decoding functions, where a quantity of the decoder blocks is less than a quantity of the data packet identification blocks and optimized according to one or more goals. If no decoder block is available and the validated data packet is a higher priority data packet, a decoder block processing a lower priority data packet may be forced to stop processing the lower priority data packet and process the higher priority data packet.
摘要:
A decoder for a modulation scheme is configured to operate close to the radio noise floor. A correlation value may be constantly updated, in an effort to match to a signature to a preamble of a packet. A low clamp value may act as a floor to which a calculated correlation value is set, if it is less than the low clamp value. If a correlation threshold is exceeded, then the correlation value is examined to determine it is a peak value. If the peak is found, power of the preamble is compared to a power threshold that is relative to the radio noise floor. If the power threshold is exceeded, positive correlation is detected. A channel optimizer is used to remove the frequency misalignment. This enables the use of a filter that is approximately equal to the occupied bandwidth of the incoming signal, further rejecting noise and interference.
摘要:
A multichannel radio receiver may include a radio frequency (RF) subsystem and a digital subsystem. The RF subsystem may be configured to provide analog information associated with a radio band to an analog to digital converter (ADC). The ADC samples the analog input and sends digital output to the digital subsystem. The digital subsystem may be configured with one or more channelizers and one or more decoders. A channelizer within the digital subsystem may filter and re-sample the digital output to result in a channel plan having a desired bandwidth and a desired sample rate. The sample rate may be selected for compatibility with a decoder. The decoder may have design specifications based in part on a modulation scheme to be decoded. The design specifications may indicate the desired sample rate to be provided by the channelizer.
摘要:
A multichannel radio receiver is configured to define at least two channel plans, each channel plan having at least one channel. The channel plans may differ due to channel bandwidths, channel locations, channel number and/or channel spacings. At least a portion of a radio spectrum may be common to at least two of the channel plans. At least two decoders may operate simultaneously to decode different modulation schemes on each of the at least two channel plans. In one example, two channel plans overlap portions of the radio spectrum. Two different and complementary modulation schemes are used on the two channel plans, respectively. The complementary modulation schemes reject signals associated with the other. Accordingly, portions of the radio spectrum are used simultaneously by at least two channel plans and at least two modulation schemes, respectively.