Abstract:
A touch sensing unit includes a detection electrode, a switch and a boosting and discharging unit. The detection electrode detects the touch from an external object. The switch is connected to the detection electrode for generating a touch voltage. The boosting and discharging unit is connected to the detection electrode and the switch for discharging the detection electrode or boosting the voltage of the detection electrode.
Abstract:
A manufacturing method of a flexible electronic device includes providing a carrier substrate, forming a first layer on the carrier substrate, forming an insulating layer on a first surface of the first layer, forming a plurality of transistors on the insulating layer, wherein the plurality of transistors include at least one first transistor and at least one second transistor, patterning the insulating layer into a plurality of first portions, wherein the at least one first transistor and the at least one second transistor are respectively disposed on two adjacent ones of the plurality of first portions, removing the carrier substrate, and attaching a flexible substrate to a second surface of the first layer opposite to the first surface. The two adjacent ones of the plurality of first portions are isolated from each other.
Abstract:
A display device is provided. The display device includes a substrate, a channel layer, a first metal layer, and a second metal layer. The channel layer is disposed on the substrate and includes a first channel layer and a second channel layer. The first metal layer is disposed on the channel layer and includes a first gate and a second gate. The second metal layer is disposed over the first metal layer and includes a first source, a first drain, and a second source. The first gate, the first source, the first drain, and the first channel layer form a first transistor. The second gate, the second source, the first drain, and the second channel layer form a second transistor. The first transistor and the second transistor are connected in parallel.
Abstract:
A light-emitting display panel is provided. The light-emitting display panel includes a substrate. The substrate includes a display area and a peripheral area surrounding the display area. A light-emitting display structure is disposed on the display area. A first section wall is disposed on the peripheral area. The first section wall surrounds the light-emitting display structure. An enclosed wall is disposed on the peripheral area. The enclosed wall surrounds the first section wall. The enclosed wall is positioned outside the first section wall. A first inorganic material layer covers the light-emitting display structure. The first inorganic material layer covers the top surface of the array substrate outside the enclosed wall.
Abstract:
A driving circuit includes a current drive unit and a reset compensation and light emitting control circuit. The current drive unit includes a first transistor and a second transistor. The first transistor and the second transistor are connected in series, wherein the first transistor and the second transistor include a silicon semiconductor layer. The reset compensation and light emitting control circuit is coupled to the current drive unit. The reset compensation and light emitting control circuit includes a third transistor connected to a control terminal of the first transistor, wherein the third transistor is an oxide semiconductor transistor.
Abstract:
A display device includes a first substrate, a second substrate, a connecting element and a display medium. The first and second substrates are disposed opposite to each other, and the connecting element is disposed between the first and second substrates. An accommodating space is formed between the first substrate, the second substrate and the connecting element, and the display medium is disposed in the accommodating space. The connecting element has a first sealing layer, a second sealing layer and an adhesive layer. The first and second sealing layers are departed or partially connected. The second sealing layer is disposed adjacent to the accommodating space. The adhesive layer is disposed between the first and second sealing layers. The adhesive layer includes a water-resisting material.
Abstract:
The disclosure provides an organic light-emitting device. The organic light-emitting device includes a substrate, and an organic light-emitting pixel array disposed on the substrate. The organic light-emitting pixel array includes a plurality of pixels. Each pixel includes a first sub-pixel and a second sub-pixel. Each sub-pixel includes a first electrode, an organic light-emitting element, a second electrode, and an optical path adjustment layer. The optical path adjustment layer is disposed between the first electrode and the second electrode. Particularly, the thickness of the optical path adjustment layer of the first sub-pixel is substantially equal to the thickness of the optical path adjustment layer of the second sub-pixel.
Abstract:
A thin-film transistor (TFT) device comprises a gate, a source, a drain, an insulation layer and an active area. The insulation layer electrically separates the gate from the source and the drain. The active area including a plurality of contacting areas contacting the source and the drain, respectively, and generates a channel including a channel width and a channel length. The active area includes a semiconductor material and has a plurality of active-area edges. In the direction parallel to the channel width, a distance between at least a contacting-area edge of the contacting areas and the active-area edge of the active area that is near to the contacting-area edge is larger than 2.5 μm and less than or equal to 16 μm. A TFT display apparatus is also disclosed.