Abstract:
A driving circuit includes a current drive unit and a reset compensation and light emitting control circuit. The current drive unit includes a first transistor and a second transistor. The first transistor and the second transistor are connected in series, wherein the first transistor and the second transistor include a silicon semiconductor layer. The reset compensation and light emitting control circuit is coupled to the current drive unit. The reset compensation and light emitting control circuit includes a third transistor connected to a control terminal of the first transistor, wherein the third transistor is an oxide semiconductor transistor.
Abstract:
A driving circuit includes a first transistor, a second transistor and a third transistor. The first transistor has a first terminal connected to a first voltage level, a second terminal, and a third terminal The second transistor has a first terminal connected to the second terminal of the first transistor, a second terminal connected to a second voltage level, and a third terminal connected to the third terminal of the first transistor. The third transistor has a first terminal connected to the first terminal of the second transistor. The first transistor and the second transistor are low temperature poly-silicon transistors, and the third transistor is an oxide semiconductor transistor.
Abstract:
A driving circuit includes a first transistor having a first terminal, a second terminal and a control terminal; a second transistor having a first terminal connected to the second terminal of the first transistor and a second terminal connected to an organic light-emitting diode; a third transistor having a first terminal connected to the control terminal of the first transistor; a fourth transistor having a first terminal connected to the first terminal of the first transistor; and a fifth transistor having a first terminal connected to the second terminal of the second transistor. The first transistor, the second transistor and the fourth transistor are low temperature poly-silicon transistors, and the third transistor is an oxide semiconductor transistor.
Abstract:
A display device is disclosed, which includes: a first substrate; a first data line disposed on the first substrate; a first electrode disposed on the first substrate; and a first pixel defining layer disposed on the first electrode, wherein the first pixel defining layer exposes a part of the first electrode to define a first light emitting region, wherein, in a normal direction view of the first substrate, the first light emitting region partially overlaps the first data line.
Abstract:
A display includes a pixel circuit. The pixel circuit includes a light emitting diode, a first transistor, a second transistor and a third transistor. The first transistor includes a first semiconductor layer. The first transistor has a first control terminal, a second terminal, and a third terminal electrically connected to the light emitting diode. The second transistor includes a second semiconductor layer, and is electrically connected to the third terminal. The third transistor is electrically connected to the first control terminal. A material of the first semiconductor layer is different from a material of the second semiconductor layer.
Abstract:
An organic light emitting diode (OLED) based display device including a pixel circuit that includes: an OLED to be connected to a first power terminal, a transistor connected to the OLED, a first capacitor connected to the transistor, a second capacitor connected to the first capacitor and the transistor, a first switch receiving a data signal and a scanning signal and connected to the first capacitor, a second switch connected to the transistor and receiving an enable signal, a third switch connected to the transistor and receiving a compensation signal, and a switching unit configured to transmit one of the enable signal, voltage at a terminal of the first capacitor, a reference signal and the scanning signal to a terminal of the transistor when operated in a conductive state.
Abstract:
A display device includes: a substrate; a first transistor and a second transistor disposed on the substrate; a first electrode and a second electrode, wherein the first electrode is electrically connected to the first transistor through a first via hole, and the second electrode is electrically connected to the second transistor through a second via hole; a first signal line disposed on the substrate and overlapped with the first electrode and the second electrode; and a second signal line disposed on the substrate and adjacent to the first signal line, wherein the first signal line and the second signal line extend along a first direction, wherein a distance between the first via hole and the second via hole along the first direction is greater than a distance between the first signal line and the second signal line along a second direction different the first direction.
Abstract:
A light-emitting circuit is provided herein, which includes a light-emitting unit, a driving transistor, and a bypass transistor. The driving transistor is configured to drive the light-emitting unit. The bypass circuit diverts the current flowing from the driving transistor to the light-emitting unit for reducing the possibility of the light-emitting unit illuminating in the dark state.
Abstract:
A display device includes: a substrate; a data line disposed on the substrate; an another data line disposed on the substrate and adjacent to the data line; a first light emitting diode including a first electrode; and a second light emitting diode including an another first electrode, wherein the first electrode partially overlaps the data line and the another first electrode partially overlaps the another data line.
Abstract:
A display includes a pixel circuit. The pixel circuit includes a light emitting diode, a first transistor, a second transistor and a third transistor. The first transistor includes a first semiconductor layer. The first transistor has a first control terminal, a second terminal, and a third terminal electrically connected to the light emitting diode. The second transistor includes a second semiconductor layer, and is electrically connected to the third terminal. The third transistor is electrically connected to the first control terminal. A material of the first semiconductor layer is different from a material of the second semiconductor layer.