Abstract:
Analyzing complex systems by receiving labeled event data describing events occurring in association with a complex system, generating a first machine learning model according to the distribution of labeled event data, receiving state variable transition data describing state variable transitions occurring in association with a complex system, training a second machine learning model according to a combination of a distribution of state variable transitions and the first machine learning model, and using the second machine learning model to predict the effects of events upon state variables within the complex system according to new state variable transition and new labeled event data.
Abstract:
A hybrid sensor can be generated by training a machine learning model, such as a neural network, based on a training data set. The training data set can include a first time series of upstream sensor data having forward dependence to a target variable, a second time series of downstream sensor data having backward dependence to the target variable and a time series of measured target variable data associated with the target variable. The target variable has measuring frequency which is lower than the measuring frequencies associated with the upstream sensor data and the downstream sensor data. The hybrid sensor can estimate a value of the target variable at a given time, for example, during which no actual measured target variable value is available.
Abstract:
A task effort estimator may determine a probability distribution of an estimated effort needed to complete unfinished tasks in a project based on one or more of a set of completed tasks belonging to a project and attributes associated with the completed tasks belonging to the project, a set of completed tasks not belonging to the project and attributes associated with the completed tasks not belonging to the project, or the combination of both. A project completion predictor may determine a probability distribution of completion time for the project based on the probability distribution of an estimated effort needed to complete the unfinished tasks in the project, and one or more resource and scheduling constraints associated with the project.
Abstract:
A product and methodology is contemplated for monitoring a multivariate process. The product has a computer readable storage medium with program instructions embodied therewith. The program instructions are executable by a computer processor to cause the device to: segment data obtained from the multivariate process into a time series of snapshot intervals, each snapshot interval further segmented into a predetermined plurality of zone intervals; compute a contrastive metric from the segmented data for each variable during each zone interval; compare the computed contrastive metrics to one or more predetermined threshold values to define representationally relevant zone intervals for each variable; apply representation learning to derive zone-based feature vectors for each variable during the corresponding relevant zone intervals; and concatenate the zone-based feature vectors into a representation vector for the multivariate process during the time series of snapshots.
Abstract:
According to a present invention embodiment, a system for training a reinforcement learning agent comprises one or more memories and at least one processor coupled to the one or more memories. The system trains a machine learning model based on training data to generate a set of hyperparameters for training the reinforcement learning agent. The training data includes encoded information from hyperparameter tuning sessions for a plurality of different reinforcement learning environments and reinforcement learning agents. The machine learning model determines the set of hyperparameters for training the reinforcement learning agent, and the reinforcement learning agent is trained according to the set of hyperparameters. The machine learning model adjusts the set of hyperparameters based on information from testing of the reinforcement learning agent. Embodiments of the present invention further include a method and computer program product for training a reinforcement learning agent in substantially the same manner described above.
Abstract:
In an approach for real-time opportunity discovery for productivity enhancement of a production process, a processor extracts a set of features from time series data, through autoencoding using a neural network, based on non-control variables for the time series data. A processor identifies one or more operational modes based on the extracted features including a dimensional reduction with a representation learning from the time series data. A processor identifies a neighborhood of a current operational state based on the extracted features. A processor compares the current operational state to historical operational states based on the time series data at the same operational mode. A processor discovers an operational opportunity based on the comparison of the current operational state to the historical operational states using the neighborhood. A processor identifies control variables in the same mode which variables are relevant to the current operational state.
Abstract:
A relationship between an input, a set-point of a plurality of processes and an output of a corresponding process is learned using machine learning. A regression function is derived for each process based upon historical data. An autoencoder is trained for each process based upon the historical data to form a regularizer and the regression functions and regularizers are merged together into a unified optimization problem. System level optimization is performed using the regression functions and regularizers and a set of optimal set-points of a global optimal solution for operating the processes is determined. An industrial system is operated based on the set of optimal set-points.
Abstract:
Systems, computer-implemented methods, and computer program products to facilitate modeling bi-directional effects between events and system variables are provided. According to an embodiment, a system can comprise a processor that executes components stored in memory. The computer executable components comprise a machine learning component that learns mutual dependencies jointly over event occurrence data and transition data, wherein the transition data comprises state variable transitions observed over a multivariate state variable set.
Abstract:
Triggering a prioritized alert and provisioning an action may include receiving historical data associated with a set of projects, the historical data spanning multiple consecutive time periods. A hierarchical data structure is generated that includes occurrences of performance factors in the historical data. Based on the hierarchical data structure, Bayesian scores associated with the performance factors are derived, the Bayesian scores representing likelihood of the performance factors occurring in a given project. The performance factors are ranked based on the Bayesian scores. Based on ranking, an alert and an action may be automatically triggered.
Abstract:
Embodiments of the present invention provide computer-implemented methods, computer program products and computer systems. Embodiments of the present invention can, identify a plurality of data variables within a multivariate event dataset. Embodiments of the present invention can then formalize a causal inference between at least two identified data variables within the multivariate event dataset and generate a structural framework of an average effect value for the multivariate event dataset based on the formalization of the causal inference of the identified data variables. Embodiments of the present invention can then calculate an inverse propensity score for the generated structural framework of the average effect based on a type of identified variable, a predetermined time associated with the identified variable, and a causal connection strength between the identified variables.