Abstract:
A pixel circuit configured to emit light based on an image signal includes: a light emitting element (organic EL element); a driver transistor configured to adjust current supplied to the light emitting element; and a write transistor connected between a signal line to which the image signal is applied and the driver transistor. The driver transistor includes: a gate electrode; a counter electrode disposed opposite the gate electrode; and a channel disposed between the gate electrode and the counter electrode. A potential applied to the counter electrode in a write period in which the write transistor conducts current in a state in which the image signal is applied to the signal line reduces a resistance value of the driver transistor to lower value than a potential applied to the counter electrode in an emission period of the light emitting element does.
Abstract:
The pixels of an organic EL display panel each include an anode electrode layer, an organic layer, and a cathode electrode layer. Each of the organic layer and the cathode electrode layer is shared by the plurality of pixels. An organic EL element in each of the pixels includes an anode section, a cathode section, and a light emitting section. A conductor layer having a recess is provided in a region outside a region of the organic EL element in a view from a light exiting direction in which the organic EL element emits light. The recess includes a coated section that is covered with the organic layer and a conductor exposed section where the conductor layer is exposed. The cathode electrode layer is connected to part of the conductor exposed section.
Abstract:
A pixel circuit includes a driving transistor, a write transistor, a first switching transistor, a second switching transistor, a first storage capacitor, and a second storage capacitor. The driving transistor controls a current flowing in a light-emitting device. The write transistor controls application of a signal voltage to a gate of the driving transistor. The first switching transistor controls a gate voltage of the driving transistor upon correction operation that allows a gate-source voltage of the driving transistor to come close to a threshold voltage of the driving transistor. The second switching transistor is provided at a path between first and second terminals. The first storage capacitor is provided at a path between the gate of the driving transistor and the first terminal. The second storage capacitor is provided at a path between the gate of the driving transistor and the second terminal.
Abstract:
A pixel circuit includes a driving transistor, a write transistor, a first switching transistor, a first storage capacitor, a second and third switching transistors, and a second storage capacitor. The driving transistor controls a current flowing in a light-emitting device. The write transistor controls application of a signal voltage to a source end of the driving transistor. The first switching transistor controls a gate voltage of the driving transistor during correction operation that allows a gate-source voltage of the driving transistor to come close to a threshold voltage of the driving transistor. The second switching and third switching transistors are provided, in series, at an electrically conductive path between the source end of the driving transistor and a first voltage line.
Abstract:
A display unit includes: a unit pixel; a switch configured to perform ON-OFF control between a second terminal and a third terminal, based on a pulse signal applied to a first terminal, the second terminal being supplied with a DC signal, and the third terminal being connected to the unit pixel; and a non-linear element interposed between the first terminal and the third terminal.
Abstract:
A display panel includes a plurality of pixels and a plurality of power lines. The plurality of pixels are disposed in a matrix and include respective light-emitting devices and respective pixel circuits. The pixel circuits are disposed at unequal intervals in a column direction. The light-emitting devices are provided to allow light-emitting regions of the respective light-emitting devices to have an equal interval in the column direction. The plurality of power lines are extended in a row direction and each supply a current flowing into the light-emitting device. Each one of the plurality of power lines is disposed for a plurality of pixel rows. A spacing between the pixel circuits in the column direction is relatively large at a portion facing one of the power lines. A spacing between the pixel circuits in the column direction is relatively small at a portion facing wiring other than the power lines.
Abstract:
A display unit includes: a unit pixel; a switch configured to perform ON-OFF control between a second terminal and a third terminal, based on a pulse signal applied to a first terminal, the second terminal being supplied with a DC signal, and the third terminal being connected to the unit pixel; and a non-linear element interposed between the first terminal and the third terminal.