摘要:
Methods and implantable devices that address response to, or avoidance of, likely non-cardiac voltages including after potentials from external or internal stimulus. Also, methods of operation in implantable medical devices, the methods configured for identifying saturation of input circuitry and mitigating the effects of such saturation. Also, implantable cardiac stimulus or monitoring devices that include methods for identifying saturated conditions and mitigating the effects of such saturation.
摘要:
Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In illustrative examples, captured data including detected events is analyzed to identify likely overdetection of cardiac events. In some illustrative examples, when overdetection is identified, data may be modified to correct for overdetection, to reduce the impact of overdetection, or to ignore overdetected data. New methods for organizing the use of morphology and rate analysis in an overall architecture for rhythm classification and cardiac signal analysis are also discussed.
摘要:
Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In some examples, captured data including detected events is analyzed to identify likely overdetection of cardiac events. In some illustrative examples, when overdetection is identified, data may be modified to correct for overdetection, to reduce the impact of overdetection, or to ignore overdetected data. Several examples emphasize the use of morphology analysis using correlation to static templates and/or inter-event correlation analysis.
摘要:
Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In illustrative examples, sensed data including detected events is analyzed to identify likely overdetection of cardiac events. In some illustrative examples, when overdetection is identified, data may be modified to correct for overdetection, to reduce the impact of overdetection, or to ignore overdetected data.
摘要:
Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In illustrative examples, captured data including detected events is analyzed to identify likely overdetection of cardiac events. In some illustrative examples, when overdetection is identified, data may be modified to correct for overdetection, to reduce the impact of overdetection, or to ignore overdetected data. New methods for organizing the use of morphology and rate analysis in an overall architecture for rhythm classification and cardiac signal analysis are also discussed.
摘要:
Methods, systems, and devices for signal analysis in an implantable cardiac device such as an implantable cardioverter defibrillator. In illustrative examples, captured data including detected events is analyzed to identify likely overdetection of cardiac events. Analysis of the apparent width of detected events is used to determine whether overdetection is occurring. If overdetection is identified, data may be modified to correct for overdetection, to reduce the impact of overdetection, or to ignore overdetected data.
摘要:
Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In some illustrative examples, detected events are analyzed to identify changes in detected event amplitudes. When detected event amplitudes are dissimilar from one another, a first set of detection parameters may be invoked, and, when detected event amplitudes are similar to one another, a second set of detection parameters may be invoked. Additional methods determine whether the calculated heart rate is “high” or “low,” and then may select a third set of detection parameters for use when the calculated heart rate is high.
摘要:
Methods and devices for sensing vector analysis in an implantable cardiac stimulus system. In an illustrative example, a first sensing vector is analyzed to determine whether it is suitable, within given threshold conditions, for use in cardiac event detection and analysis. If so, the first vector may be selected for detection and analysis. Otherwise, one or more additional vectors are analyzed. A detailed example illustrates methods for analyzing sensing vectors by the use of a scoring system. Devices adapted to perform these methods are also discussed, including implantable medical devices adapted to perform these methods, and systems comprising implantable medical devices and programmers adapted to communicate with implantable medical devices, the systems also being adapted to perform these methods. Another example includes a programmer configured to perform these methods including certain steps of directing operation of an associated implanted or implantable medical device.
摘要:
Methods, implantable medical devices and systems configured to perform analysis of captured signals from implanted electrodes to identify cardiac arrhythmias. In an illustrative embodiment, signals captured from two or more sensing vectors are analyzed, where the signals are captured with a patient in at least first and second body positions. Analysis is performed to identify primary or default sensing vectors and/or templates for event detection.
摘要:
Methods and devices for sensing vector analysis in an implantable cardiac stimulus system. In an illustrative example, a first sensing vector is analyzed to determine whether it is suitable, within given threshold conditions, for use in cardiac event detection and analysis. If so, the first vector may be selected for detection and analysis. Otherwise, one or more additional vectors are analyzed. A detailed example illustrates methods for analyzing sensing vectors by the use of a scoring system. Devices adapted to perform these methods are also discussed, including implantable medical devices adapted to perform these methods, and systems comprising implantable medical devices and programmers adapted to communicate with implantable medical devices, the systems also being adapted to perform these methods. Another example includes a programmer configured to perform these methods including certain steps of directing operation of an associated implanted or implantable medical device.