Abstract:
A developing roller includes a roller main body disposed to face, without contact, an outer circumferential surface of an image carrier. The roller main body includes an aluminum oxide thin film and a resin coat layer, the aluminum oxide thin film being formed on an outer circumferential surface of a base body that is made of a metal including aluminum, the resin coat layer being formed on a surface of the aluminum oxide thin film that has been subjected to a predetermined heating process, the resin coat layer being made of a resin material and having electric conductivity.
Abstract:
A developing roller includes a roller main body disposed to face, without contact, an outer circumferential surface of an image carrier. The roller main body includes a resin coat layer that is formed on an outer circumferential surface of a base body that is made of a metal including aluminum, the resin coat layer being made of a resin material and having electric conductivity. An AC impedance Z obtained from an application of an AC voltage at a frequency in a range from 0.05 Hz to 100 Hz is equal to or higher than 100Ω, and a phase angle θ satisfies a relationship of 0 rad
Abstract translation:显影辊包括辊状主体,其被设置为面对而不接触图像载体的外周表面。 辊主体包括树脂涂层,该树脂涂层形成在由包括铝的金属制成的基体的外周面上,该树脂涂层由树脂材料制成并具有导电性。 从0.05Hz至100Hz的范围内的AC电压的施加获得的交流阻抗Z等于或高于100Ω,相位角& 当功率因数为cos&Theta; = Za / Z时,满足0 rad <&amp; tas; <0.1 rad的关系。
Abstract:
A developing roller includes a roller main body disposed to face, without contact, an outer circumferential surface of an image carrier. A resin coat layer has been formed on an outer circumferential surface of the roller main body, the resin coat layer being made of a resin material having electric conductivity. A product of resistance component Rs [Ω] and electrostatic capacitance component Cs [F] in AC impedance Z of the roller main body is in a range from 2.79×10−7 to 6.77×10−5, the AC impedance Z being obtained when an AC voltage of a predetermined frequency f is applied.
Abstract:
A developing unit includes a casing, a developer carrier, a developer conveying path, a developer conveying member, and a layer thickness regulator. The developer carrier is driven to rotate in the casing and carries a toner on the circumferential surface. The developer conveying member is located in the developer conveying path and driven to rotate so as to convey the developer in a second direction and to supply the toner to the developer carrier. The layer thickness regulator is spaced from the developer carrier, and regulates a layer thickness of the developer supplied to the developer carrier. The developing unit is configured to satisfy a condition of 2.0
Abstract:
A developing device of this disclosure has: a housing, a developing roller, a developer conveying path, a partition board, a second communication path, a developer receiving port, a first conveying member, a second conveying member, and a conveyance capability inhibition part. A toner is cyclically conveyed in a first conveying path and a second conveying path. A first stirring screw is disposed in the first conveying path and driven into ration around a first rotation axis for toner conveyance. Formed downstream of the first stirring screw by the conveyance capability inhibition part is a toner accumulation part, and the amount of toner refilled from a toner refill port is adjusted. Where an aperture area of the first communication path is A1 and a circular area formed by an outer circumferential edge of the first stirring screw in section orthogonal to the first rotation axis is A2, relationship 0.5×A2