Abstract:
An image forming apparatus includes first, second, and third acquisition processing portions. The first acquisition processing portion acquires the potential value of a charged area, charged by the charging member, on the image-carrying member. The second acquisition processing portion acquires a state value regarding the state of a surface layer of the image-carrying member based on the potential value of the charged area acquired by the first acquisition processing portion and the current value of a charging current flowing through the charging member during formation of the charged area. The third acquisition processing portion acquires the electrical resistance value of the transfer member based on the state value acquired by the second acquisition processing portion, the voltage value of a transfer voltage applied to the transfer member, and the current value of a transfer current flowing through the charged area in response to application of the transfer voltage.
Abstract:
An image forming apparatus includes a developing member, a first detection processing portion, and an acquisition processing portion. The developing member conveys developer to a facing portion between the developing member and the image-carrying member. The first detection processing portion detects a first development current for each of a plurality of specific voltages with different DC voltage values applied to the developing member, the first development current flowing, in response to application of the specific voltages, through the facing portion including the developer and a specific exposed area, formed by the light emitting portion, on the image-carrying member. The acquisition processing portion acquires a potential value of the specific exposed area based on the DC voltage values of the specific voltages and current values of the first development current, detected by the first detection processing portion, corresponding to the respective specific voltages.
Abstract:
An image forming apparatus includes: a development device which develops an electrostatic latent image formed on a photosensitive drum into a toner image; a charger which charges the photosensitive drum; a development power supply which applies a bias voltage to the development device; an electric current measuring section which measures a development current flowing in the development device; and a calculating section which calculates a surface potential of the photosensitive drum based on the development current. The charger applies charging biases to the photosensitive drum. The electric current measuring section measures a corresponding value of the development current for each development bias voltage applied to the development device. The calculating section calculates, per charging bias, a development bias voltage at which the development current stops flowing as the surface potential, and calculates a correspondence between the surface potential and the charging bias based on calculated values of the surface potential.
Abstract:
An image forming apparatus has a photosensitive member, a charging member, an exposing device, a developing device, a transfer member, a polishing member, a driving device, a voltage applying device, a torque detector, and a control portion. The photosensitive member has a photosensitive layer and a surface protection layer formed on the surface of the photosensitive layer. The polishing member has an elastic layer on its circumferential surface, and rotates with a linear velocity difference from that of the photosensitive member. The torque detector detects the torque of the driving device. The control portion estimates an attachment condition of discharge products to the surface of the photosensitive member based on the torque of the driving device detected by the torque detector. When the torque is equal to or higher than a predetermined value, the control portion performs an image degradation suppression process.
Abstract:
A fixing device includes a heating belt, a heat source, a pressuring body, a pressing member and a sheet member. The heating belt is endless and heats a medium while being circulated. The heat source supplies heat to the heating belt. The pressuring body forms a nip with the heating belt, rotates so as to circulate the heating belt and presses the medium with the heating belt. The pressing member is disposed inside the heating belt and presses the heating belt against the pressuring body at the nip. The sheet member is held between the heating belt and the pressing member, attached to the pressing member at a center side portion and both end side portions in a longitudinal direction of the sheet member and has a heat shrinkable property. The both end side portions are shiftable in the longitudinal direction greater than the center side portion.
Abstract:
A fixing device includes a fixing belt, a pressuring member, a heat source and a reflecting member. The fixing belt is arranged rotatably around a rotation axis. The reflecting member reflects the radiant heat radiated from the heat source. The fixing belt has a passing region and a non-passing region. Through the passing region, a recording medium passes. The non-passing region is arranged outside the passing region in a direction of the rotation axis. The reflecting member has a first reflecting part and a second reflecting part. The first reflecting part is arranged at an inner circumferential side of the passing region. The second reflecting part is arranged at an inner circumferential side of the non-passing region. Roughness of a face at the heat source side of the second reflecting part is larger than roughness of a face at the heat source side of the first reflecting part.
Abstract:
A fixing device according to the present invention includes a fixing belt (22), a pressuring member (23), a heat source (24), a reflecting member (25) reflecting the radiant heat radiated from the heat source (24) to an inner circumference face of the fixing belt (22), a pressing member (27) pressing the fixing belt (22) to a side of the pressuring member (23) and a supporting member (26) supporting the pressing member (27). The reflecting member (25) is arranged between the heat source (24) and the supporting member (26) and configured to be curved or bent so as to project toward a side of the heat source (24). Straight lines (L) connecting a center (Z) of the heat source (24) with both end parts of the supporting member (26) in a conveying direction of a recording medium pass through the reflecting member (25).
Abstract:
A developer conveyance device includes a housing and a conveyance member. The conveyance member is supported to the housing and rotates to convey developer. The conveyance member includes a shaft portion, a helical member, and a plurality of reinforcement members. The plurality of reinforcement members are disposed in a circumferential direction of rotation of the conveyance member. When viewing a cross section in a direction intersecting with the rotational axis, an outer circumferential surface of the helical member includes a facing region and a non-facing region, which are defined for one reinforcement member of the plurality of reinforcement members, the facing region being a region where the one reinforcement member of the plurality of reinforcement members is projected on an opposite side of an outer circumferential surface of the helical member through the rotational axis, and the non-facing region being a region of the outer circumferential surface of the helical member which is different from the facing region. The other reinforcement member of the plurality of reinforcement members is disposed in the non-facing region.
Abstract:
A developer case includes a main body, a first transportation portion, a first transportation member, a supply member, a discharge port, and a second transportation portion. The main body contains developer. The first transportation portion has a first region that receives developer from the main body and a second region that extends from the first region in a first direction. The first transportation member transports developer in the first direction. The supply member supplies developer to the first region. Developer is discharged through the discharge port. The second transportation portion has an inlet port communicating with the second region. Developer that has not been discharged through the discharge port is supplied to the second transportation portion through the inlet port. The second transportation portion transports developer in a second direction.
Abstract:
An image forming portion applies a bias voltage in which an AC component is superimposed on a DC component between a first carrying member and a second carrying member, and transfers toner from the first carrying member to the second carrying member to form an image on the second carrying member. An AC setting processing portion performs AC calibration to set a magnitude of the AC component of the bias voltage. A potential measurement processing portion measures a surface potential of the first carrying member or the second carrying member based on a target current flowing between the first carrying member and the second carrying member. A drive processing portion executes the AC calibration before measurement of the surface potential in a case where, when measuring the surface potential, an activation condition is satisfied.