Abstract:
A developing device includes a developing roller, a toner supplying roller, a regulation blade, a casing, a toner receiver support member, a toner receiver member, and a vibration generator. The toner receiver member is disposed along a longitudinal direction of the toner receiver support member facing the developing roller, and has a toner receiving surface inclined downward from the image-carrier side toward the toner-supplying-roller side. The toner receiving surface is disposed to be inclined so as to rise from the toner-supplying-roller side toward the image-carrier side. The toner receiving surface has a plurality of grooves formed therein to be inclined to approach a center part of the toner receiving surface from each end side of the toner receiving surface in its longitudinal direction, from an edge of the toner receiving surface on the image-carrier side toward an edge of the toner receiving surface on the toner-supplying-roller side.
Abstract:
A developing device includes a toner carrying member, a developer carrying member, a layer thickness restricting portion, a rotation control portion, and a developer carrying member difference voltage control portion. The rotation control portion, when developing is not performed, causes the developer carrying member to rotate forwardly and then to rotate reversely. The developer carrying member difference voltage control portion, in the non-developing forward rotation state, sets a voltage of the developer carrying member that is based on a potential of the toner carrying member, to a voltage that is smaller than a first reference voltage that is set when the developing is performed. The non-developing forward rotation state is a state in which the developer carrying member rotates forwardly when the developing is not performed.
Abstract:
A developing device supplies a developer to a photosensitive drum, which has a cylindrical shape, and is rotatable around an axis thereof for forming an electrostatic latent image on the circumferential surface thereof. The developing device is provided with a developing roller. The developing roller is disposed to face the photosensitive drum, and has a cylindrical shape. The developing roller is rotatable around an axis thereof for carrying a developer on the circumferential surface thereof. The developing roller is provided with a small diameter portion. The small diameter portion is a part of the circumferential surface of the developing roller. The small diameter portion extends from an axial end of the developing roller axially inward by a predetermined length, and has an outer diameter smaller than an axially middle portion of the developing roller.
Abstract:
A bias condition determiner executes, in order, a first direct current voltage determination mode (first DC calibration) for determining a provisional reference direct current voltage that is a provisional reference for a direct current voltage of a developing bias applied to a developing roller, an inter-peak voltage determination mode (AC calibration) for determining a reference inter-peak voltage that is a reference for an inter-peak voltage of an alternating current voltage of the developing bias applied to the developing roller in an image forming operation, and a second direct current voltage determination mode (second DC calibration) for determining a reference direct current voltage that is a reference for the direct current voltage of the developing bias applied to the developing roller in the image forming operation.
Abstract:
A bias condition determination portion of an image forming device executes each of: a first approximation expression determination operation that respectively acquires the DC component of the development current with at least three peak-to-peak voltages included in a first measurement range and determines a first expression showing a relation between the peak-to-peak voltage and the DC component of the acquired development current, a second approximation expression determination operation that respectively acquires the DC component of the development current with at least three peak-to-peak voltages included in a second measurement range larger than the first measurement range and determines a second approximation expression showing a relation between the peak-to-peak voltage and the DC component of the acquired development current, and a reference voltage determination operation that determines, as a reference peak-to-peak voltage, the peak-to-peak voltage at an intersection where the first approximation expression and the second approximation expression intersect each other.
Abstract:
A bias condition determiner executes a direct current voltage determination mode (DC calibration) for determining a reference direct current voltage that is a reference for a direct current voltage of a developing bias applied to a developing roller in an image forming operation and an inter-peak voltage determination mode (AC calibration) for determining a reference inter-peak voltage that is a reference for an inter-peak voltage of an alternating current voltage of the developing bias applied to the developing roller in the image forming operation. A calibration executor determines whether the inter-peak voltage determination mode needs to be executed in accordance with a value of the reference direct current voltage.
Abstract:
Provided is an image forming apparatus capable of suppressing the occurrence of image defects in response to a difference in carrier resistance and obtaining high image quality. A developing unit has a developing roller that carries toner in a two-component developer that includes a toner and a magnetic carrier on the surface thereof, and forms a toner image on the surface of a photosensitive drum. A current detecting unit detects developing current flowing between the developing roller and the photosensitive drum when a developing voltage is applied to the developing roller by a developing power supply. When the developing voltage is applied to the photosensitive drum, a control unit derives a carrier resistance based on the developing current detected by a current detecting unit, and controls an AC amplitude of an AC voltage of the developing voltage based on the carrier resistance.
Abstract:
An image forming apparatus includes a developer information acquisition unit. The developer information acquisition unit performs a developer deterioration information acquisition operation. In the developer deterioration information acquisition operation, the developer information acquisition unit acquires a tilt of a measurement straight line representing the relationship between the change amount of the frequency in a first measurement toner image forming operation and the density change amount of the measurement toner image based on the change amount of the frequency in the first measurement toner image forming operation and a result of detecting density of the measurement toner image in a density detecting unit, and acquires a toner charging amount based on the acquired tilt of the measurement straight line and the reference information in the storage unit so as to acquire information relating to deterioration of developer based on the acquired toner charging amount.
Abstract:
A developing device includes a developing roller and a layer thickness regulating member. The developing roller includes a fixed magnet and a sleeve. The layer thickness regulating member includes a regulating body portion and an upstream regulating portion, and the upstream regulating portion includes an upstream magnetic member and a nonmagnetic member. Developer is hardly strongly jammed in an area between a first magnetic field concentration point of the regulating body portion and a second magnetic field concentration point of the upstream regulating portion. Thus, even if the sleeve of the developing roller is rotated at a higher speed than before, the developer is stably regulated by the layer thickness regulating member.
Abstract:
A developing device includes a developing roller, a toner supply roller, a regulating blade, a casing, a toner-reception supporting member, a toner reception member, and a vibration generating unit. The toner-reception supporting member is opposed to the developing roller or the toner supply roller between the regulating blade and the image carrier. The toner reception member is located so as to make a downward slope toward the toner supply roller side from the image carrier side along a longitudinal direction of the toner-reception supporting member. The toner reception member has a toner receiving surface that receives the toner dropping from the developing roller. The vibration generating unit vibrates the toner reception member. The toner reception member includes a sheet-shaped toner crushing member attached to overlap approximately a whole region of the toner receiving surface in a longitudinal direction. The toner crushing member is swingably supported with respect to the toner receiving surface.