摘要:
A portable communicator for operating a field device. The portable communicator is configured to communicate with the field device to configure and/or analyze performance of a field device in an efficient manner. In some embodiments, the portable communicator includes an intuitive user interface that allows the user to perform a relatively limited set of preconfigured procedures on a field device. The portable communicator may communicate with the field device via a wire and/or wirelessly. In one embodiment, the portable communicator is a Bluetooth-enabled smartphone, a PDA, a pocket PC, or any Bluetooth-enabled generic mobile communication device. The portable communicator may communicate with the field device via a wireless communication unit (e.g., Bluetooth modem) coupled to the field device. In a process plant environment, in which the field device is coupled to a controller, the portable communicator may communicate with the field device without communicating with the controller.
摘要:
A portable communicator for use in a process control system. The portable communicator includes a touchscreen configured to receive input from a user. The touchscreen may include a user interface that separate the scrolling functionality from the selection functionality. In one embodiment, the user interface includes a first portion and a second portion that is separate from the first portion. The first portion of the user interface includes multiple input fields associated with a multiple parameters of a field device. The first portion enables a user to scroll through the multiple input fields (e.g., via a grab-and-drag mechanism), and the second portion enables the user to select a value for at least one of the multiple input fields in the first portion.
摘要:
A control loop of a control valve is operated using outlet pressure from a pneumatic amplifier as the control parameter. The control loop may be operated continuously in pressure control mode, or may be switched from another mode, such as travel control mode, to pressure control mode in response to certain operating conditions such as operation in the cutoff range, operation with the throttling element engaging a travel stop, or as a backup in the event of primary control parameter sensor failure. Operating the control loop in pressure control mode further allows diagnostics to be performed on the control loop components, even when the system is operating in cutoff range or has engaged a travel stop. The diagnostics may be performed using pressure and displacement sensors normally provided with a positioner. A processor may be programmed to receive data from the sensors and generate fault signals according to a logic sub-routine. The logic sub-routine may include calculating mass flow of control fluid through pneumatic amplifier outlet ports and comparing other operating parameters to detect leaks and blockages in the control loop components. Once a fault is detected, the location of the root cause of the fault may be identified by characterizing operating parameters of the control loop at the time of the fault.
摘要:
Method and apparatus for performing diagnostics in a pneumatic control loop for a control valve. Pressure and displacement sensors normally provided with a positioner are used to detect operating parameters of the control loop. A processor is programmed to receive feedback from the sensors and generate fault signals according to a logic sub-routine. The logic sub-routine may include calculating mass flow of control fluid through spool valve outlet ports and comparing other operating parameters of the control fluid to detect leaks and blockages in the control loop. Once a fault is detected, the location of the root cause of the fault may be identified by characterizing operating parameters of the control loop at the time of the fault.
摘要:
A diagnostic test unit for deterministically measuring one or more parameters, such as dead band, dead time, response time, gain, or overshoot, of a process control device that is connected in a process control loop during operation of a process includes a switch controller, a signal generator, a switch, a response accumulator mechanism, and an analyzer mechanism. The switch controller monitors a process signal during operation of the process to determine whether the process signal is substantially stable. In the event that the process signal is substantially stable, the switch replaces a control signal with a diagnostic test signal generated by the signal generator. The response accumulator is in communication with the process control loop to obtain an indication of the response of the process control device to the diagnostic test signal. The analyzer unit then determines the device parameter from the test signal and the response indication.
摘要:
The present disclosure relates to various assets utilized within manufacturing and process plants for monitoring and control purposes. The asset data modules of the present disclosure include an integral near field communications (NFC) interface configured to provide access to asset data stored within memory integral to the given asset.
摘要:
A portable communicator for operating a field device. The portable communicator is configured to communicate with the field device to configure and/or analyze performance of a field device in an efficient manner. In some embodiments, the portable communicator includes an intuitive user interface that allows the user to perform a relatively limited set of preconfigured procedures on a field device. The portable communicator may communicate with the field device via a wire and/or wirelessly. In one embodiment, the portable communicator is a Bluetooth-enabled smartphone, a PDA, a pocket PC, or any Bluetooth-enabled generic mobile communication device. The portable communicator may communicate with the field device via a wireless communication unit (e.g., Bluetooth modem) coupled to the field device. In a process plant environment, in which the field device is coupled to a controller, the portable communicator may communicate with the field device without communicating with the controller.
摘要:
Methods and apparatus for evaluating vibration resistance of a component of a fluid control valve are disclosed herein. An example method disclosed herein includes selecting a component of a fluid control valve and positioning a sensor relative to the selected component. The method also includes mechanically exciting the selected component, determining a resonant frequency of the selected component, and taking corrective action based on the resonant frequency of the selected component.
摘要:
A lead-lag input filter is connected ahead of a positioner feedback loop having one or more valve accessories, such as a volume booster or a QEV, to overcome slow dynamics experienced by the accessories when receiving low amplitude change control or set point signals. A user interface is connected to the lead-lag input filter and enables an operator or other control personnel to view and change the operating characteristics of the lead-lag input filter to thereby provide the control loop with any of a number of desired response characteristics.
摘要:
A lead-lag input filter is connected ahead of a positioner feedback loop having one or more valve accessories, such as a volume booster or a QEV, to overcome slow dynamics experienced by the accessories when receiving low amplitude change control or set point signals. A user interface is connected to the lead-lag input filter and enables an operator or other control personnel to view and change the operating characteristics of the lead-lag input filter to thereby provide the control loop with any of a number of desired response characteristics.