Abstract:
The present disclosure relates to an organic compound having the following structure, and an organic light emitting diode (OLED) and an organic light emitting device including the organic compound. The organic compound is a bipolar compound having a p-type moiety and an n-type moiety and has high energy level and proper energy bandgap for an emissive layer of the OLED. As the organic compound is applied into the emissive layer, the OLED can maximize its luminous properties as holes and electrons are recombined uniformly over the whole area in an emitting material layer (EML).
Abstract:
The present invention provides an organic compound of following formula and an organic light emitting diode and an OLED device including the organic compound.
Abstract:
An organic compound having a naphtho fluoranthene core and a hetero aromatic group bonded to a specific position of the naphtho fluoranthene core, an organic light-emitting diode and an organic light-emitting device including the compound are disclosed. Since the organic compound has a narrow Stokes Shift between an absorption wavelength and an emission wavelength, the organic compound has a broad overlapped area between its absorption peak and an emission peak of a delayed fluorescent material, and therefore it can emit blue light with high color purity. It is possible to manufacture an organic light-emitting diode (OLED) and an organic light-emitting device that enhance luminous efficiency and color purity using the organic compound.
Abstract:
Embodiments relate to a delayed fluorescence compound of Formula 1: or Formula 2: The excitons in the triplet state are engaged in emission such that the emitting efficiency of the delayed fluorescent compound is increased. Embodiments also relate to a display device with an organic light emitting diode (OLED) that includes the delayed fluorescence compound.
Abstract:
The present invention provides an organic light emitting diode (OLED) device including a first electrode; a second electrode facing the first electrode; an emitting material layer disposed between the first and second electrodes and including a liquid crystal type emitting material being horizontally oriented.