Abstract:
A one-phase static var compensator apparatus includes a compensator string consisting of a first static var compensator connected serially to a thyristor valve. The compensator string is arranged to be connected on its first end to one phase of a transmission grid of a rated voltage exceeding 69 kV. Moreover, the thyristor valve includes a plurality of thyristors connected serially and the compensator string is arranged to be directly connected to the transmission grid. A corresponding three phase apparatus is also presented.
Abstract:
A method for calculating insertion indices for a phase leg of a DC to AC modular multilevel converter. Each phase leg includes two serially connected arms, wherein each arm includes a number of submodules, wherein each submodule can be in a bypass state or a voltage insert mode. The insertion index includes data representing the portion of available submodules that should be in the voltage insert mode. The method includes the steps of: calculating a desired arm voltage for an upper arm connected to the upper DC source common bar and a lower arm connected to the lower DC source common bar, obtaining values representing actual total arm voltages in the upper arm and lower arm, respectively, and calculating modulation indices for the upper and lower arm, respectively, using the respective desired arm voltage and the respective value representing the total actual arm voltage. A corresponding apparatus is also presented.
Abstract:
A one-phase static var compensator apparatus includes a compensator string consisting of a first static var compensator connected serially to a thyristor valve. The compensator string is arranged to be connected on its first end to one phase of a transmission grid of a rated voltage exceeding 69 kV. Moreover, the thyristor valve includes a plurality of thyristors connected serially and the compensator string is arranged to be directly connected to the transmission grid. A corresponding three phase apparatus is also presented.
Abstract:
A method for calculating insertion indices for a phase leg of a DC to AC modular multilevel converter. Each phase leg includes two serially connected arms, wherein each arm includes a number of submodules, wherein each submodule can be in a bypass state or a voltage insert mode. The insertion index includes data representing the portion of available submodules that should be in the voltage insert mode. The method includes the steps of: calculating a desired arm voltage for an upper arm connected to the upper DC source common bar and a lower arm connected to the lower DC source common bar, obtaining values representing actual total arm voltages in the upper arm and lower arm, respectively, and calculating modulation indices for the upper and lower arm, respectively, using the respective desired arm voltage and the respective value representing the total actual arm voltage. A corresponding apparatus is also presented.
Abstract:
A device for compensation of the reactive power consumption of an industrial load, preferably an electric arc furnace or a plant for rolling of metallic materials, supplied from a three-phase (a, b, c) electric ac network, comprises a first compensation device for controllable consumption of reactive power and a second compensation device for generation of reactive power. The first compensation device comprises an inductor connected in series with a semiconductor connection controllable in dependence on a control order (.alpha.ref) supplied thereto. Control equipment is supplied with measured values of voltage (Ua, Ub, Uc) and current (Ia, Ib, Ic), respectively, at the load. The control equipment comprises devices for determination of the instantaneous consumption of active and reactive power by the load, and a control device which forms the control signal to the first compensation device in dependence on the consumption of reactive power and active power by the load.
Abstract:
A three-phase voltage stiff convertor (SR) has two six-pulse partial convertors (SR1, SR2). The alternating voltage terminals of the partial convertors are connected to a transformer (TR) with the aid of which the resultant alternating voltage of the converter is formed as the difference between the alternating voltages of the partial convertors. Each partial converter has a separate direct voltage source (C1, C2). The converter has control members (SD) which control the two partial convertors which a mutual phase displacement alternating between +150.degree. and -150.degree..
Abstract:
A static convertor with forced commutation is connected between an alternating voltage network and a direct voltage network. A filter is connected in parallel with a smoothing capacitor on the DC side of the convertor. The filter consists of the series-connection of an inductor, a filter capacitor and two controllable semiconductor valves that are connected in parallel in opposed relation. The natural frequency of the filter is higher than the product of the frequency of the alternating voltage network and the pulse number of the converter. The valves are made to carry current in time with the fundamental tone of the AC component present in the direct current of the convertor. In this way, the variations of the direct voltage of the convertor, caused by the AC direct current component, may be practically eliminated.