-
公开(公告)号:US20190179317A1
公开(公告)日:2019-06-13
申请号:US16176509
申请日:2018-10-31
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Benjamin Englard , Eric C. Danziger , Austin K. Russell
Abstract: A non-transitory computer-readable medium stores instructions executable by one or more processors to implement a sensor control architecture for controlling at least a first sensor of a vehicle. The sensor control architecture is configured to receive sensor data generated by one or more sensors of the vehicle. The one or more sensors are configured to sense an environment through which the vehicle is moving. The sensor control architecture is also configured to determine, based on the received sensor data and using an attention model that is trained using a machine learning technique, one or more sensor settings, and to cause one or more sensor parameters of the first sensor to be adjusted in accordance with the determined sensor settings. The one or more sensor parameters include at least one sensor parameter that defines an area of focus for the first sensor.
-
公开(公告)号:US20190107623A1
公开(公告)日:2019-04-11
申请号:US16155243
申请日:2018-10-09
Applicant: Luminar Technologies, Inc.
Inventor: Scott R. Campbell , Matthew D. Weed , Lane A. Martin , Jason M. Eichenholz , Austin K. Russell
Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light along a scan pattern contained within an adjustable field of regard. The scanner includes a first scanning mirror configured to scan the portion of the emitted pulses of light substantially parallel to a first scan axis to produce multiple scan lines of the scan pattern, where each scan line is oriented substantially parallel to the first scan axis. The scanner also includes a second scanning mirror configured to distribute the scan lines along a second scan axis that is substantially orthogonal to the first scan axis, where the scan lines are distributed within the adjustable field of regard according to an adjustable second-axis scan profile.
-
公开(公告)号:US20180284278A1
公开(公告)日:2018-10-04
申请号:US15845552
申请日:2017-12-18
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Austin K. Russell , Matthew D. Weed , Liam J. McGregor , Lane A. Martin , Jason M. Eichenholz
IPC: G01S17/10
CPC classification number: G01S17/102 , G01S7/4816 , G01S7/4817 , G01S7/483 , G01S7/4865 , G01S7/497 , G01S17/10 , G01S17/42 , G01S17/87 , G01S17/89 , G01S17/936
Abstract: To increase the effective pulse rate of a light source in a lidar system, a controller provides control signals to the light source to transmit a light pulse once the previous light pulse has been received. The controller may communicate with a receiver in the lidar system that detects received light signals. In response to detecting a received light signal, the receiver may provide an indication of the received light signal to the controller which may in turn provide a control signal to the light source to transmit the next light pulse. The receiver may also provide characteristics of the received light signal to the controller, such as the peak power for the received light signal, the average power for the received light signal, the pulse duration of the received light signal, etc. Then the controller may analyze the characteristics to determine whether to transmit another light pulse.
-
公开(公告)号:US20180284244A1
公开(公告)日:2018-10-04
申请号:US15824416
申请日:2017-11-28
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Austin K. Russell , Jason M. Eichenholz , Laurance S. Lingvay
CPC classification number: G01S7/497 , G01S7/4804 , G01S17/58 , G01S17/936
Abstract: To dynamically control power in a lidar system, a controller identifies a triggering event and provides a control signal to a light source in the lidar system adjusting the power of light pulses provided by the light pulse. Triggering events may include exceeding a threshold speed, being within a threshold distance of a person or other object, an atmospheric condition, etc. In some scenarios, the power is adjusted to address eye-safety concerns.
-
公开(公告)号:US20180284226A1
公开(公告)日:2018-10-04
申请号:US15909012
申请日:2018-03-01
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Joseph G. LaChapelle , Matthew D. Weed , Scott R. Campbell , Jason M. Eichenholz , Austin K. Russell , Lane A. Martin
CPC classification number: G01S7/484 , G01S7/003 , G01S7/4868 , G01S7/497 , G01S17/10 , G01S17/42 , G01S17/936 , G01S17/95 , G01S2007/4975 , G01W1/02 , G01W1/14 , Y02A90/19
Abstract: To detect an atmospheric condition at the current location of a lidar system, a receiver in the lidar system detects a return light pulse scattered by a target and analyzes the characteristics of the return light pulse. The characteristics of the return light pulse include a rise time, a fall time, a duration, a peak power, an amount of energy, etc. When the rise time, fall time, and/or duration exceed respective thresholds, the lidar system detects the atmospheric condition such as fog, sleet, snow, rain, dust, smog, exhaust, or insects. In response to detecting the atmospheric condition, the lidar system adjusts the characteristics of subsequent pulses to compensate for attenuation or distortion of return light pulses due to the atmospheric condition. For example, the lidar system adjusts the peak power, pulse energy, pulse duration, inter-pulse-train spacing, number of pulses, or any other suitable characteristic.
-
公开(公告)号:US20180284225A1
公开(公告)日:2018-10-04
申请号:US15876669
申请日:2018-01-22
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Matthew D. Weed , Scott R. Campbell , Lane A. Martin , Jason M. Eichenholz , Austin K. Russell , Rodger W. Cleye , Melvin L. Stauffer
Abstract: To compensate for motor dynamics in a scanner in a lidar system, a light source transmits light pulses at a variable pulse rate in accordance with a scan speed of the scanner. More specifically, the pulse rate may be directly related to the scan speed so that the light source transmits light pulses uniformly across a field of regard. A controller may determine the scan speed and provide a control signal to the light source adjusting the pulse rate accordingly.
-
公开(公告)号:US20180088236A1
公开(公告)日:2018-03-29
申请号:US15818501
申请日:2017-11-20
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
CPC classification number: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system with a light source to emit a pulse of light and a receiver to detect a return pulse of light. The receiver can include a first channel to receive a first portion of the return pulse and produce a first digital output signal, and a second channel to receive a second portion of the return pulse and produce a second digital output signal. The receiver can include a logic circuit to produce an output electrical-edge signal in response to receiving the digital output signals. The receiver can also include a time-to-digital converter to determine a time interval based on an emission time of the pulse of light and based on the electrical-edge signal. The lidar system can also include a processor to determine a distance to a target based at least in part on the time interval.
-
公开(公告)号:US09857468B1
公开(公告)日:2018-01-02
申请号:US15470708
申请日:2017-03-27
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
CPC classification number: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system with a pulsed laser diode configured to produce an optical seed pulse of light at an operating wavelength between approximately 1400 nm and approximately 1600 nm. The lidar system may also include an optical amplifier configured to amplify the optical seed pulse to produce an eye-safe output optical pulse that is emitted into a field of view. The optical amplifier may produce an amount of amplified spontaneous emission (ASE) associated with the output optical pulse. The lidar system may include an optical filter configured to filter the output optical pulse to reduce the associated ASE. The lidar system may also include a receiver configured to detect at least a portion of the output optical pulse reflected or scattered from the field of view.
-
公开(公告)号:US12158524B2
公开(公告)日:2024-12-03
申请号:US17121723
申请日:2020-12-14
Applicant: Luminar Technologies, Inc.
Inventor: Pranav Maheshwari , Vahid R. Ramezani , Benjamin Englard , István Peter Burbank , Shubham C. Khilari , Meseret R. Gebre , Austin K. Russell
Abstract: A method for determining a scan pattern according to which a sensor equipped with a scanner scans a field of regard (FOR) is presented. The method comprises obtaining, by processing hardware, a plurality of objective functions, each of the objective functions specifying a cost for a respective property of the scan pattern, expressed in terms of one or more operational parameters of the scanner. The method further includes applying, by the processing hardware, an optimization scheme to the plurality of objective functions to generate the scan pattern. The method further includes scanning the FOR according to the generated scan pattern.
-
公开(公告)号:US11874401B2
公开(公告)日:2024-01-16
申请号:US16378315
申请日:2019-04-08
Applicant: Luminar Technologies, Inc.
Inventor: Joseph G. LaChapelle , Matthew D. Weed , Scott R. Campbell , Jason M. Eichenholz , Austin K. Russell , Lane A. Martin
IPC: G01C3/08 , G01S7/484 , G01W1/02 , G01S17/10 , G01S17/42 , G01S7/00 , G01S7/497 , G01W1/14 , G01S17/95 , G01S7/486 , G01S17/931
CPC classification number: G01S7/484 , G01S7/003 , G01S7/497 , G01S17/10 , G01S17/42 , G01W1/02 , G01W1/14 , G01S7/4868 , G01S17/931 , G01S17/95 , G01S2007/4975 , Y02A90/10
Abstract: In one embodiment, a method for dynamically varying receiver characteristics in a lidar system includes emitting light pulses by a light source in a lidar system. The method further includes detecting, by a receiver in the lidar system, light from one of the light pulses scattered by one or more remote targets to identify a return light pulse. The method also includes determining an atmospheric condition at or near a geolocation of a vehicle that includes the lidar system. The method further includes providing a control signal to the receiver adjusting one or more characteristics of the receiver to compensate for attenuation or distortion of the return light pulses associated with the atmospheric condition.
-
-
-
-
-
-
-
-
-