摘要:
A card information-storing portion is provided in a semiconductor memory card, and information relating to access performance such as access condition and access rate is held in the storing portion. Further, an access device acquires the held information from the semiconductor memory card to make it possible that the information can be used for control of a file system. This optimizes processing of the access device and the semiconductor memory card independent of differences in characteristics of semiconductor memory cards and management methods used, realizing high-rate access from the access device to a semiconductor memory card.
摘要:
An access device 1 internally includes a logical-physical empty capacity management part 16 for obtaining information of a remaining capacity on a write once memory from a write once recording device 2A. In addition, the write once recording device 2A internally includes a physical empty capacity management part 27 for managing a remaining capacity on the write once memory and notifying the access device of the capacity. Prior to recording of file data, the access device 1 can know an accurate remaining capacity of the write once recording device by: obtaining a remaining capacity of the write once memory from the write once recording device 2A; and comparing the capacity with a remaining capacity on an FAT to decide an actually-recordable remaining capacity for file data.
摘要:
An information recording medium such as a semiconductor memory card includes a first semiconductor memory having a first recording area accessed by a relatively small access unit and storing file system management information, a second semiconductor memory having a second recording area accessed by a relatively large access unit and storing file data (file entity data), and a controller for controlling the first and second semiconductor memories. The information recording medium selects either one of recording areas of the first and second semiconductor memories depending on the data type, and writes data into the selected recording area.
摘要:
In a storage medium which has a number of areas, access to any area is controlled in accordance with whether or not access to another area is possible, and thereby, destruction of data due to malfunctioning or a wrong operation is prevented. A link control part which controls access to the second area based on the information on access to the first area is provided, and access to the second area is controlled on the basis of whether or not access to the first area is possible. Control becomes possible, such that access to the second area becomes impossible in the state where access to the first area is impossible, while access to the second area becomes possible in the case where access to the first area is possible.
摘要:
An information recording medium such as a semiconductor memory card includes a first semiconductor memory having a first recording area accessed by a relatively small access unit and storing file system management information, a second semiconductor memory having a second recording area accessed by a relatively large access unit and storing file data (file entity data), and a controller for controlling the first and second semiconductor memories. The information recording medium selects either one of recording areas of the first and second semiconductor memories depending on the data type, and writes data into the selected recording area.
摘要:
A lifetime parameter generation part 128 generates a lifetime parameter related to a lifetime of a nonvolatile memory device 110. When the remaining lifetime has become short, a mode switching part 129 switches a read-write mode of a read-write control part 124 from a rewritable mode to a write once mode and notifies an access device 100 that the mode has been switched to the write once mode. Thus, a user can easily recognize the moment when an apparatus having the built-in nonvolatile memory cannot be used, and, immediately before the lifetime is over, the mode can be automatically switched to the write once mode in which writing can be carried out only once.
摘要:
An access device 1 internally includes a logical-physical empty capacity management part 16 for obtaining information of a remaining capacity on a write once memory from a write once recording device 2A. In addition, the write once recording device 2A internally includes a physical empty capacity management part 27 for managing a remaining capacity on the write once memory and notifying the access device of the capacity. Prior to recording of file data, the access device 1 can know an accurate remaining capacity of the write once recording device by: obtaining a remaining capacity of the write once memory from the write once recording device 2A; and comparing the capacity with a remaining capacity on an FAT to decide an actually-recordable remaining capacity for file data.
摘要:
When a file system control part 155A writes file data into a main memory 142, a file can be easily written continuously and the number of file copy can be decreased at updating a directory entry by writing the file data and a directory entry into different allocation units. In this manner, when using a nonvolatile memory in which physical block size as an erase unit is larger than cluster size, the write performance can be enhanced.
摘要:
A semiconductor memory card 1 includes a user data area 21 and a management information area 22, in a data storing unit 2. According to a writing test command from a memory access device 6, a memory controller 3 writes data into a user data storing area and measures the writing rate, and transmits the measurement result to the memory access device 6 via a host interface unit 4. Thereby, the memory access device 6 can recognize the writing rate.
摘要:
When a write command is issued, new data is written into a free physical block of a nonvolatile memory (110). Here, if data of the same logical block has been written already, the block is erased and a recording state is judged by a recording state judgment unit (126). A physical block is swapped according to the number of write processes performed. Thus, it is possible to effectively perform a swap without increasing the number of write processes in a particular area, thereby increasing the lifetime of a nonvolatile storage module.