摘要:
A method for correcting MR data elements acquired in the presence of an imperfectly linear gradient field, each element comprising nominal first and second quadrature components. The quadrature components are multiplied by an artifact correction factor to provide respective first and second quantities. A Gradwarp geometric correction operation is applied to respective quantities to provide a corrected first and second quadrature component, corresponding to each data element. For a given data element, the arctangent function is applied to the result obtained by dividing the first corrected component by the second corrected component to provide a corrected phase component for use in forming an image.
摘要:
A 3D MRI image is acquired as a series of spherical shells of increasing radius. Each shell is sampled by one or more interleaved spiral sampling trajectories and to shorten the scan time one or more spiral sampling trajectories are skipped in the larger shells that sample the periphery of k-space. Motion correction of the acquired k-space data is accomplished by reconstructing tracking images from each of the shells and locating markers therein which indicate object movement from a reference position. The k-space data is corrected using this movement information.
摘要:
A system and method for correcting systematic errors that occur in MR images due to magnetic gradient non-uniformity is disclosed for use with parametric analysis. A GradWarp geometric correction operation is applied in reconstructing quantitative parametric analysis images in regions of gradient non-uniformity. The method includes generating an error map of magnetic gradient strength as a function of distance for an MR image scan and acquiring MR data that contain such systematic errors. The method next includes either calculating a measured diffusion image, a phase difference image, or similar image, based on the acquired MR data, and then calculating a corrected parametric image using the error map and the measured diffusion image, the phase difference image, or other similar parametric image. The method is incorporated into a system having a computer programmed to perform the aforementioned steps and functions.
摘要:
Fast spin echo pulse sequences are adjusted to reduce, or eliminate image artifacts caused by Maxwell terms arising from the linear imaging gradients. The waveforms of the slice selection, phase encoding and readout gradients are adjusted in shape, size or position to eliminate or reduce the phase error caused by the spatially quadratic Maxwell terms.
摘要:
A method for providing an indication of the limits of available functional gradient power when MRI equipment is used to obtain oblique MRI images calculates a "maximum absolute row sum" of a rotational matrix defining the degree obliquity of the image. This maximum absolute row sum provides one or more target functional gradient values based on the limitations of the physical gradients of the system.
摘要:
A steady-state free procession fast NMR pulse sequence includes a readout gradient waveform which refocuses the transverse magnetization to produce an S- NMR signal during the subsequent pulse sequence. A partial echo signal acquisition is acquired which enables the pulse sequence to be shortened and enables the S+ NMR signal to be displaced from the data acquisition window without disturbing the flow compensation. View reordering is used in combination with phase cycling to suppress the S+ NMR signal.
摘要:
A method for prescribing a scan on an MRI system includes selecting a general pulse sequence to be used during a time-resolved imaging process of a subject using an MRI system. The method also includes setting a first set of scan parameters to more specifically prescribe the general pulse sequence and setting a second set of scan parameters using a formula that relates time resolution and spatial resolution resulting from the first set of scan parameters. The method then includes performing the time-resolved imaging process using the general pulse sequence, the first set of scan parameters, and the second set of scan parameters.
摘要:
An MRI system performs a pulse sequence to acquire image data from a subject. The RF power applied to the subject is monitored and the acquisition is altered if any one of three trip levels is exceeded. Each trip level is different and is associated with a different time interval over which applied RF power is measured.
摘要:
An MRI system acquires NMR signals and digitizes them at a fixed sample rate. A lower, prescribed sample rate is obtained by fractionally decimating the sampled NMR signals. Fractional decimation is achieved by a combination of zeropadding the sampled NMR signal in the frequency domain and decimating the sampled NMR signal in the time domain.
摘要:
A method of peripheral MR angiography is provided for imaging an artery or other vessel, wherein the vessel is of such length that MR data must be acquired at each of a plurality of scan stations spaced along the vessel. In accordance with the method, a contrast agent is intravenously injected, in order to provide a bolus which successively flows to each of the scan stations. After acquiring an initial subset of the MR data associated with a given scan station, the bolus is tracked to determine whether it has arrived at the next-following scan station. If so, at least some of the MR data associated with the next scan station are then acquired. However, if it is found that the bolus has not yet arrived at the next scan station, acquisition of further data at the given scan station is continued.