摘要:
Fast spin echo pulse sequences are adjusted to reduce, or eliminate image artifacts caused by Maxwell terms arising from the linear imaging gradients. The waveforms of the slice selection, phase encoding and readout gradients are adjusted in shape, size or position to eliminate or reduce the phase error caused by the spatially quadratic Maxwell terms.
摘要:
Fast spin echo pulse sequences are adjusted to reduce, or eliminate image artifacts caused by Maxwell terms arising from the linear imaging gradients. The waveforms of the slice selection, phase encoding and readout gradients are adjusted in shape, size or position to eliminate or reduce the phase error caused by the spatially quadratic Maxwell terms.
摘要:
A fast spin echo (FSE) pulse sequence is employed to perform a multi-slice, multi-angle MRI scan. The slices are scanned in groups, with all the slices in each group being oriented at the same angle and sampled in an interleaved manner. Total scan time is reduced by acquiring multiple, separately phase encoded echo signals during each FSE pulse sequence. Presaturation bands may be produced for each group of slices to reduce flow artifacts in the reconstructed slice images.
摘要:
A method for acquiring spatially and spectrally selective MR images by means of an MR imaging system includes the step of selecting an SPSP pulse sequence, comprising a succession of RF sub-pulses and an oscillatory gradient magnetic field, which is disposed to select a slice through a subject. The method further includes measuring specified parameters of a perturbation magnetic field associated with the imaging system, and deriving an expression for the perturbation field from respective measured parameters and from the oscillatory gradient magnetic field. A specified ideal frequency modulation function, associated with the SPSP sequence, is disposed to offset the slice to a particular spatially localized region of the subject. The SPSP pulse sequence is modified by adjusting the frequency modulation function in specified corresponding relationship with the expression. The modified SPSP pulse sequence is then applied to the subject to excite a selected spectral species in the spatially localized region, while substantially reducing signal intensity loss resulting from the perturbation magnetic field.
摘要:
A method for correcting Maxwell field induced distortion, ghosting, and blurring artifacts in non-axially oriented EPI images is disclosed. In one embodiment phase corrections are calculated and used to offset Maxwell term errors during the image reconstruction process, and in another embodiment corrections are made after the image is reconstructed.
摘要:
Two methods are disclosed to remove the image artifacts produced by Maxwell terms arising from the imaging gradients in an echo planar imaging pulse sequence. In the first method, the frequency and phase errors caused by the Maxwell terms are calculated on an individual slice basis and subsequently compensated during data acquisition by dynamically adjusting the receiver frequency and phase. In the second method, two linear phase errors, one in the readout direction and the other in the phase-encoding direction, both of which arise from the Maxwell terms, are calculated on an individual-slice basis. These errors are compensated for in the k-space data after data acquisition.
摘要:
A method is disclosed to remove the image artifacts produced by Maxwell terms arising from the imaging gradients in an echo planar imaging pulse sequence. The frequency and phase errors caused by the Maxwell terms are calculated on an individual slice basis. During the subsequent data acquisition these errors are compensated by dynamically adjusting the receiver frequency and phase.
摘要:
Signal fall-off in axial EPI images as well as its variations is corrected by compensating the EPI pulse sequence with gradient pulses that serve to balance the phase dispersion caused by Maxwell terms. Four embodiments are described which employ the slice-selection gradient to compensate the EPI pulse sequence and a fifth embodiment employs the readout gradient.
摘要:
Systems and methods for efficiently generating MR images are provided. The method comprises acquiring k-space MR data, reconstructing an MR image from the k-space MR data, and generating the MR image. The MR image is reconstructed using an alternative-direction-method-of-multiplier (ADMM) strategy that decomposes an optimization problem into subproblems, and at least one of the subproblems is further decomposed into small problems. The further decomposition is based on Woodbury matrix identity and uses a diagonal preconditioner based on non-Toeplitz models.
摘要:
In an MRI system using high-performance gradient hardware, a method includes de-rating selected lobes in a 2DTOF imaging pulse sequence; employing images from the two-dimensional imagery to detect the presence of disease; and performing three-dimensional contrast-enhanced MRA if disease was detected at a sufficiently high level to make three-dimensional imaging useful. By de-rating selected lobes of the 2DTOF imaging pulse sequence, sensitivity to carotid stenosis at or above the clinically important range of 60-70% is achieved.