Abstract:
The present invention relates to an apparatus for iterative scatter correction of a data set of x-ray projections (10) of an object (1) for generation of a reconstruction image of said object. In particular for correction of artifacts caused by scatter or a truncation of x-ray projections, an apparatus is proposed, which requires less computational effort and which thus allows a correction in real-time, comprising: a model estimation unit (41) for estimating model parameters of an object model for said object by an iterative optimization of a deviation of forward projections, calculated by use of said object model and the geometry parameters for said x-ray projections, from the corresponding x-ray projections, —a scatter estimation unit (42) for estimating the amount of scatter present in said x-ray projections by use of said object model, and a correction unit (43) for correcting said x-ray projections by subtracting the estimated amount of scatter from said x-ray projections for determining an optimized object model using said corrected x-ray projections, said optimized object model being used in another iteration of said scatter correction, said scatter correction being iteratively carried out until a predetermined stop criterion has been reached. Further, corresponding apparatus for extension of truncated projections and a reconstruction apparatus is proposed.
Abstract:
A flow pattern in a tube system is calculated from acquired image data. From the flow pattern virtual image data are generated and compared with the acquired data in order to determine a quality measure for the usability of the generated flow pattern at characteristic locations.
Abstract:
When performing image-guided biopsy of an anatomical structure in a patient, a target anatomical patient region containing biopsy target is imaged using both SPECT and XCT concurrently. 3D SPECT and XCT image data is fused to generate a fused 3D reference image that is overlaid on 2D patient image(s) generated during the biopsy procedure to generate an overlay image. The overlay image also includes a planned path or trajectory for a biopsy instrument. The 2D patient images are generated using SPECT and/or XCT, and are updated periodically to show biopsy instrument position and progress.
Abstract:
The present invention relates to an image generation device for generating an image from measured data, wherein image quality is optimized for a region of interest and to an imaging system comprising this image generation device. The image generation device comprises a noise determination unit for determining a distribution of noise in a projection domain of the region of interest, and a dose control unit (32) for determining a dose profile for a radiation source (2) of said image generation device based on said determined distribution of noise by using a noise propagation algorithm. Thereby, signal-to-noise ratio of a reconstructed volume can be improved and is not sensitively dependent on a selected region of interest.
Abstract:
The present invention relates to a device (2) for automatically quantifying intravascular embolization success, comprising a registration unit (4) adapted for registering a first image and a second image, a segmentation unit (6) adapted for segmenting a tissue of interest in the first image and in the second image and an evaluation unit (8) for evaluating a deviation of perfusion of the tissue of interest by comparing the first image and the second image. The first image is obtained before an interventional treatment, whereas the second image is obtained after such a treatment. Evaluating may comprise comparing the segments of the first and the second images and thus providing a quantitative measure for a perfusion deviation of the tissue, e.g. the perfusion deviation of a tumorous tissue before and after an embolization treatment.
Abstract:
The present invention relates to a detection values correction apparatus for correcting detection values of a projection image of a multi-energy imaging system. A scatter contribution providing unit provides scatter contributions for different intensities, different energies and different locations on the detection surface of the detection values. A scatter contributions combining unit combines scatter contributions for correcting a detection value, wherein the combined scatter contributions represent the contribution of the scatter, which is caused by radiation of the other detection values of the projection image, to the detection value to be corrected and wherein the scatter contributions are combined under consideration of the intensity, energy and location on the detection surface of the other detection values. A correction unit scatter corrects the detection value of the projection image by using the combined scatter contributions.
Abstract:
The present invention relates to an imaging apparatus for generating an image of a region of interest of an object. The imaging apparatus comprises a radiation source (2) for emitting radiation (4) and a detector (6) for measuring the radiation (4) after having traversed the region of interest and for generating measured detection values depending on the measured radiation (4). The imaging apparatus further comprises an attenuation element for attenuating the radiation (4) before traversing the region of interest and an attenuation element scatter values providing unit (12) for providing attenuation element scatter values, which depend on scattering of the radiation (4) caused by the attenuation element. A detection values correction unit (17) corrects the measured detection values based on the provided attenuation element scatter values, and a reconstruction unit (18) reconstructs an image of the region of interest from the corrected detection values.
Abstract:
It is provided a method for imaging a dynamic process in a part of the body, especially blood perfusion, with an x-ray system as well as corresponding apparatuses and a corresponding computer readable medium. Especially it is described a method for imaging a dynamic process in a part of the body, especially blood perfusion, with an x-ray system, comprising: acquiring rotational projections of the part of the body over an angular range (2), deriving the anatomy of the part of the body subject to the dynamic process using a tomographic reconstruction from the projections (3), determining an optimal position of the x-ray system according to the derived anatomy for acquiring projections of the dynamic process (4), administering contrast agent to the part of the body (5), acquiring projections of the dynamic process from the determined position (6); calculating the dynamic contrast enhancement over time (7); and calculating and displaying perfusion parameters (8).
Abstract:
A method for generating a set of kernels for convolution error compensation of a projection image of a physical object recorded by an imaging system comprises calculating the set of kernels in such a way that for each pixel of the projection image an asymmetric scatter distribution for error compensation is calculated representing a X-ray scatter originating along a ray from an X-ray source to the pixel.
Abstract:
The present invention relates to an image reconstruction device and a corresponding method for reconstructing a 3D image of an object (7) from projection data of said object (7). In order to obtain 3D images having sharp high-contrast structures and almost no image blur, and in which streak artifacts (and noise in tissue-like regions) are strongly reduced, an image reconstruction device is proposed comprising: a first reconstruction unit (30) for reconstructing a first 3D image of said object (7) using the original projection data, an interpolation unit (31) for calculating interpolated projection data from said original projection data, —a second reconstruction unit (32) for reconstructing a second 3D image of said object (7) using at least the interpolated projection data, a segmentation unit (33) for segmentation of the first or second 3D image into high-contrast and low-contrast areas, a third reconstruction unit (34) for reconstructing a third 3D image from selected areas of said first and said second 3D image, wherein said segmented 3D image is used to select image values from said first 3D image for high-contrast areas and image values from said second 3D image for low-contrast areas.