Abstract:
Methods and systems for flexible-client, flexible-link optical transponders include electrical-to-optical transponders, which accept client data from a flow distributor, and a first multiplexing switch that connects modulated optical carriers from the transponders to line interfaces. The electrical-to-optical transponders each include a flexible optical transport unit (OTU) framer module that compresses multiple optical data units (ODUs) into a single ODU having a higher order than any of the input ODUs to form an optical transport network (OTN) frame. An electrical-to-optical modulator modulates OTN frames onto a carrier. The transponder includes a second multiplexing switch that accepts optical carriers from line interfaces and optical-to-electrical transponders that accept modulated optical carriers from the second multiplexing switch. Each optical-to-electrical transponder includes a photodetector to convert the modulated optical carriers to the electrical domain and a flexible OTU framer module that decompresses received ODUs in OTN frames into multiple ODUs to form a bit stream.
Abstract:
A method includes provisioning joint bandwidth in a software defined passive optical network PON based mobile backhaul MBH and cache management on base stations for video delivery across the network, the provisioning in each time unit includes grouping bandwidth utilization in the network into a first category used to support video requests which cannot directly be served by caches on base stations, the first category video requests being high priority, and if bandwidth remains after the high priority requests remaining bandwidth being used to deliver some videos that are low priority to caches.
Abstract:
Systems and methods for data transport, including receiving one or more signals into a reconfigurable and flexible rate shared rate multi-transponder network architecture, wherein the network architecture includes one or more transponders with multiple line side interfaces and one or more client side interfaces. The transponders are configured to map one or more signals to multiple parallel Virtual Ethernet Links, remove idle characters from the one or more signals, buffer one or more blocks of characters using an intermediate block buffer, activate and deactivate one or more portions of input/output electrical lanes of an Ethernet module, multiplex and demultiplex the one or more signals to and from the input/output electrical lanes to enable sharing of a single optical transceiver by multiple independent signals, and insert blocks of idle characters to enable transmission over a lower rate transmission pipe.