Abstract:
A gas sensor includes an element body including oxygen-ion-conductive solid electrolyte layers and having a measurement-object gas flow section inside the element body; a main pump cell configured to adjust the oxygen concentration in a first internal cavity; an auxiliary pump cell configured to adjust the oxygen concentration in a second internal cavity; a measurement electrode disposed on an inner peripheral surface of a third internal cavity; and a reference electrode. An inner pump electrode of the main pump cell does not contain a noble metal having a catalytic activity inhibition ability. An auxiliary pump electrode of the auxiliary pump cell contains the noble metal having the catalytic activity inhibition ability.
Abstract:
A catalyst deterioration diagnosis method is a method for a system. The system includes a gas sensor having ammonia interference property that measures an air-fuel ratio and nitrogen oxide concentration of an exhaust gas that has passed through a catalyst. Monitoring of temporary increase of nitrogen oxide concentration to be detected by the gas sensor is started, and thereby a temporarily increased amount of the nitrogen oxide concentration is acquired. The monitoring is started when a fuel injection device restarts fuel injection after a fuel cut in a case where an air-fuel ratio most recently obtained by the gas sensor is larger than a predetermined threshold air-fuel ratio. The predetermined threshold air-fuel ratio is larger than a stoichiometric air-fuel ratio. Whether or not the temporarily increased amount is larger than a threshold amount is determined.
Abstract:
A first gas sensor includes a main pump cell that pumps oxygen inside a main oxygen concentration adjustment chamber, by applying a main pump voltage between a main interior side electrode and an exterior side electrode, and causing a main pump current to flow, a preliminary pump cell that pumps the oxygen inside a preliminary adjustment chamber by applying a preliminary pump voltage between an interior side preliminary electrode and the exterior side electrode, and causing a preliminary pump current to flow, and a constant control unit that controls the preliminary pump voltage of the preliminary pump cell in a manner so that the main pump current of the main pump cell becomes constant.
Abstract:
A mixed-potential gas sensor for measuring a concentration of a predetermined gas component of a measurement gas includes sensing electrodes mainly made of an oxygen-ion conductive solid electrolyte and located on a surface of a sensor element, and at least one reference electrode including a cermet including Pt and an oxygen-ion conductive solid electrolyte. The sensing electrodes each include a cermet including a noble metal and an oxygen-ion conductive solid electrolyte. The noble metal includes Pt and Au. A Au abundance ratio, which is an area ratio of a portion covered with the Au to a portion at which the Pt is exposed in a surface of noble metal particles forming each of the sensing electrodes, differs among the sensing electrodes. The gas sensor determines a concentration of the predetermined gas component based on a potential difference between each of the sensing electrodes and the at least one reference electrode.
Abstract:
A gas sensor with excellent detection sensitivity is provided. A sensing electrode, which is provided in a mixed-potential gas sensor for measuring a concentration of a predetermined gas component of a measurement gas to sense the predetermined gas component, is formed of a cermet of a noble metal and an oxygen-ion conductive solid electrolyte. The noble metal includes Pt and Au. A range of at least 1.5 nm from a surface of a noble metal particle included in the sensing electrode is a Au enriched region having a Au concentration of 10% or more.
Abstract:
A method for diagnosing the degree of deterioration of a catalyst disposed in an exhaust path of an internal combustion engine and oxidizes or adsorbs a target gas, including at least one of a hydrocarbon gas and a carbon monoxide gas, in an exhaust gas from the internal combustion engine, is adapted to determine whether deterioration exceeding an acceptable level of a catalyst occurs or not by comparing, at any timing when the internal combustion engine is in a state of a steady operation, the concentration of a target gas detected downstream from the catalyst in the exhaust path with a threshold value of the concentration of a target gas corresponding to the temperature of a catalyst at the timing which is previously defined according to an allowable range of an index value representing the degree of oxidation or adsorption at the catalyst corresponding to the temperature of a catalyst at the timing.
Abstract:
A system for diagnosing the degree of deterioration of a catalyst disposed in an exhaust path of an internal combustion engine and oxidizes or adsorbs a target gas in an exhaust gas, includes a temperature sensor measuring a temperature of the exhaust gas at the upstream from a catalyst in an exhaust path and a gas sensor detecting a target gas at the downstream of the exhaust path and outputting an output value in accordance with a concentration of the target gas, wherein a control element is configured to diagnose the degree of deterioration in the catalyst, based on at least the output value in the gas sensor, the temperature of the catalyst identified based on a measurement value in the temperature sensor, and the threshold value at the temperature of the catalyst.
Abstract:
A sensing electrode for sensing a predetermined gas component of a measurement gas, which is provided in a mixed-potential gas sensor that measures the concentration of the predetermined gas, component, is formed of a cermet containing a noble metal and an oxygen-ion conductive solid electrolyte. The noble metal comprisesPt and Au. An Au abundance ratio, which is an area ratio of a portion covered with Au to a portion at which Pt is exposed in a surface of noble metal particles forming the sensing electrode, is 0.3 or more.