Abstract:
An output buffer circuit of a source driver includes an operational amplifier, having a first terminal as an output of the operational amplifier, and an output control unit, coupled between the output terminal of the operational amplifier and a second terminal for driving a load, to generate a variable impedance of a signal output path between the first terminal and the second terminal, wherein when the operational amplifier charges or discharges the second terminal to reach a predetermined level, the output control unit change a value of the variable impedance of the signal output path.
Abstract:
A circuit of an operational amplifier includes an operational main circuit, a plurality of current sources, and at least one clamp circuit. The current sources are configured to connect the operational main circuit to a high voltage source or a ground voltage source. The clamp circuit is connected between the operational main circuit and at least one of the current sources. Here, a transistor device connected to the clamp circuit has a crossing-voltage endurance level which is lower than a preset crossing-voltage endurance level of the operational main circuit.
Abstract:
A load driving apparatus for driving a plurality of loads is provided. The load driving apparatus includes an output stage module, a load driving module, and an output stage selection module. The output stage module includes a plurality of output stages. Each of the output stages is coupled to a corresponding one of the loads. The load driving module is coupled to the output stage module and outputs a driving signal to drive one of the loads through the output stage module. The output stage selection module is coupled between the output stage module and the load driving module and selects one of the output stages in the output stage module, so that the load driving module drives the load which is coupled to the selected output stage through the selected output stage. Furthermore, a grayscale voltage generating circuit including the foregoing load driving apparatus is also provided.
Abstract:
A capacitive image sensing device and a capacitive image sensing method are provided. The capacitive image sensing device includes a sensor array, a first charge amplifier, a second charge amplifier, a differential amplifier and a first switching circuit. The sensor array includes a plurality of sensing electrodes and a first reference sensing electrode. An input terminal of the first charge amplifier is coupled to one of the sensing electrodes. A first input terminal of the differential amplifier is selectively coupled to an output terminal of the first charge amplifier. A second input terminal of the differential amplifier is coupled to an output terminal of the second charge amplifier. The first switching circuit is configured to selectively electrically connect and disconnect the first reference sensing electrode and the input terminal of the second charge amplifier.
Abstract:
A reading device and a reading method for a fingerprint sensor are provided. The reading device includes a switching circuit, a plurality of analog front end (AFE) circuits and a calculation circuit. The switching circuit is coupled to a plurality of pixel units of the fingerprint sensor. The AFE circuits are coupled to the switching circuit. The calculation circuit is coupled to the AFE circuits for calculating a plurality of pixel data of the pixel units. For a first pixel unit among the pixel units, the calculation circuit reads the first pixel unit by using different AFE circuits among the AFE circuits, so as to obtain a plurality of first original sensing values of the first pixel unit. The calculation circuit calculates the pixel data of the first pixel unit according to the plurality of first original sensing values.
Abstract:
A fingerprint sensor device and an operation method thereof are provided. The fingerprint sensor device includes a driving electrode, a driving circuit, a fingerprint sensing plate, a reading circuit and a determination circuit. The driving circuit applies a driving signal to an object through the driving electrode. The fingerprint sensing plate has sensing electrodes configured to sense the object. The reading circuit reads the driving signal through the fingerprint sensing plate. During a period between a rising edge time point and its adjacent falling edge time point of the driving signal, the reading circuit respectively samples the driving signal in at least two different phases to obtain at least two sampling results and outputs a difference value of the at least two sampling results. The determination circuit checks the difference value to determine whether the object to be sensed is a real finger or a fake finger.
Abstract:
An operational amplifier applicable to a display device is provided. The operational amplifier having multiple output stages. The operational amplifier includes an input stage, an output stage selection module and a plurality of output stages. The output stage selection module is coupled to the input stage. Each of the output stages is coupled to the output stage selection module and is coupleable to drive a corresponding one of a plurality of loads. The output stage selection module is configured to selectively couple or discouple each of the output stages respectively to the input stage according to a plurality of selection signal. Furthermore, a load driving apparatus and a grayscale voltage generating circuit are also provided.
Abstract:
A load driving apparatus including a first driving unit, a second driving unit, and a circuit switch module is disclosed. The first and the second driving unit are respectively disposed at a first driving channel and a second driving channel and respectively output a first driving signal and a second driving signal for driving a first load and a second load during a channel output period. The circuit switch module is coupled between the first and the second driving channel and includes a plurality of signal transmitting paths. During a data loading period and a charge sharing period, the circuit switch module turns on all the signal transmitting paths, so that a charge sharing effect between the first load and the second load is achieved during the charge sharing period and accordingly the power consumption is reduced. Additionally, a load driving method of the load driving apparatus is disclosed.
Abstract:
A source driver, an operation method thereof and a driving circuit using the same are provided. The source driver includes a gamma voltage generating circuit, a first voltage buffer and a reference voltage driving circuit. The gamma voltage generating circuit receives an inter reference voltage to provide a first gray level reference voltage corresponding to a first display gray level. The first voltage buffer is used for receiving the first gray level reference voltage to provide a driving voltage. The reference voltage driving circuit is coupled to the gamma voltage generating circuit and the first voltage buffer and used for accelerating rising speed or falling speed of the first gray level reference voltage.
Abstract:
A circuit of an operational amplifier includes an operational main circuit, a plurality of current sources, and at least one clamp circuit. The current sources are configured to connect the operational main circuit to a high voltage source or a ground voltage source. The clamp circuit is connected between the operational main circuit and at least one of the current sources. Here, a transistor device connected to the clamp circuit has a crossing-voltage endurance level which is lower than a preset crossing-voltage endurance level of the operational main circuit.