Performing multi-convolution operations in a parallel processing system

    公开(公告)号:US10223333B2

    公开(公告)日:2019-03-05

    申请号:US14838291

    申请日:2015-08-27

    Abstract: In one embodiment of the present invention a convolution engine configures a parallel processing pipeline to perform multi-convolution operations. More specifically, the convolution engine configures the parallel processing pipeline to independently generate and process individual image tiles. In operation, for each image tile, the pipeline calculates source locations included in an input image batch. Notably, the source locations reflect the contribution of the image tile to an output tile of an output matrix—the result of the multi-convolution operation. Subsequently, the pipeline copies data from the source locations to the image tile. Similarly, the pipeline copies data from a filter stack to a filter tile. The pipeline then performs matrix multiplication operations between the image tile and the filter tile to generate data included in the corresponding output tile. To optimize both on-chip memory usage and execution time, the pipeline creates each image tile in on-chip memory as-needed.

    VIDEO PREDICTION USING SPATIALLY DISPLACED CONVOLUTION

    公开(公告)号:US20190297326A1

    公开(公告)日:2019-09-26

    申请号:US16360853

    申请日:2019-03-21

    Abstract: A neural network architecture is disclosed for performing video frame prediction using a sequence of video frames and corresponding pairwise optical flows. The neural network processes the sequence of video frames and optical flows utilizing three-dimensional convolution operations, where time (or multiple video frames in the sequence of video frames) provides the third dimension in addition to the two-dimensional pixel space of the video frames. The neural network generates a set of parameters used to predict a next video frame in the sequence of video frames by sampling a previous video frame utilizing spatially-displaced convolution operations. In one embodiment, the set of parameters includes a displacement vector and at least one convolution kernel per pixel. Generating a pixel value in the next video frame includes applying the convolution kernel to a corresponding patch of pixels in the previous video frame based on the displacement vector.

Patent Agency Ranking