Domain stylization using a neural network model

    公开(公告)号:US10984286B2

    公开(公告)日:2021-04-20

    申请号:US16265725

    申请日:2019-02-01

    Abstract: A style transfer neural network may be used to generate stylized synthetic images, where real images provide the style (e.g., seasons, weather, lighting) for transfer to synthetic images. The stylized synthetic images may then be used to train a recognition neural network. In turn, the trained neural network may be used to predict semantic labels for the real images, providing recognition data for the real images. Finally, the real training dataset (real images and predicted recognition data) and the synthetic training dataset are used by the style transfer neural network to generate stylized synthetic images. The training of the neural network, prediction of recognition data for the real images, and stylizing of the synthetic images may be repeated for a number of iterations. The stylization operation more closely aligns a covariate of the synthetic images to the covariate of the real images, improving accuracy of the recognition neural network.

    Domain Stylization Using a Neural Network Model

    公开(公告)号:US20190244060A1

    公开(公告)日:2019-08-08

    申请号:US16265725

    申请日:2019-02-01

    Abstract: A style transfer neural network may be used to generate stylized synthetic images, where real images provide the style (e.g., seasons, weather, lighting) for transfer to synthetic images. The stylized synthetic images may then be used to train a recognition neural network. In turn, the trained neural network may be used to predict semantic labels for the real images, providing recognition data for the real images. Finally, the real training dataset (real images and predicted recognition data) and the synthetic training dataset are used by the style transfer neural network to generate stylized synthetic images. The training of the neural network, prediction of recognition data for the real images, and stylizing of the synthetic images may be repeated for a number of iterations. The stylization operation more closely aligns a covariate of the synthetic images to the covariate of the real images, improving accuracy of the recognition neural network.

Patent Agency Ranking