Abstract:
An audio processor and method of audio processing for an amplifier system is described. The audio processor may receive an audio signal and adapt the audio signal generating a time varying offset. The time varying offset may be combined with the audio signal resulting in a shifted the audio signal level. The processed audio signal may also be clipped to remove the negative samples values. The processed signal may be used to drive an amplifier designed to only accept positive (or negative) signals such as a class C amplifier.
Abstract:
A linear resonant actuator controller for a mobile device having a linear resonant actuator is described. The linear resonant actuator controller comprises a controller output configured to be coupled to a linear resonant actuator; an audio processor having an audio processor input and an audio processor output coupled to the controller output. The audio processor is configured to receive an audio signal comprising speech, to process the audio signal by attenuating the audio signal frequency components at the resonant frequency of the linear resonant actuator with respect to at least some other audio signal frequency components, and to output the processed audio signal on the audio processor output.
Abstract:
A haptic feedback element controller for a mobile device and a method of controlling a haptic feedback element for a mobile device is described. The haptic feedback element includes a processor having a processor output, a first processor input, and a second processor input, a control state module having an output coupled to the second processor input and configured to determine at least one operating state parameter of at least one of a haptic feedback element and a haptic feedback element amplifier; wherein the processor is configured to alter the amplitude of one or more frequency components of an input signal received on the first processor input in dependence of the at least one operating state parameter and to output a processed signal to a haptic feedback element amplifier having an output for coupling to a haptic feedback element. The haptic feedback element controller may maximize the drive signal up to mechanical and thermal limits without lifetime reduction of the haptic feedback element.
Abstract:
An audio and ultrasound signal processing circuit (412), comprising: an audio input terminal (414) for receiving an input signal comprising an audio input signal; an amplitude detector (430), configured to determine an amplitude of the input signal and provide an amplitude level signal (432); a gain calculator (434) configured to determine an ultrasound amplification factor (436) in accordance with the amplitude level signal (432) and a target amplitude signal (418); a variable ultrasound amplifier (438) configured to receive an ultrasound input signal and modulate an amplitude of the ultrasound input signal in accordance with the ultrasound amplification factor (436) in order to provide an amplified ultrasound signal; and an output terminal (416) for providing an enhanced output signal comprising frequency components that correspond to the audio input signal and frequency components that correspond to the amplified ultrasound signal.
Abstract:
Mobile devices such as mobile phones typically have two speakers, one for use in a hand-set mode and one for use in a hands-free mode. A mobile device (1100) is described operable to switch between a hand-set mode and a hands-free mode, the mobile device includes a receiver speaker (10) operable in the hand-set mode and the hands-free mode of the mobile device, and a hands-free speaker (12) operable in the hands-free mode of the mobile device. The mobile device is operable in hands-free mode to route at least one audio signal to the receiver speaker and the hands-free speaker. Using the hands-free speaker and the receiver speaker may improve the sound quality without increasing the cost.
Abstract:
A signal processor and method of signal processing for a radio receiver is described. An input signal is received together with a spectral repetition interval value of an interferer signal. An interference reference signal is generated from the received spectral repetition interval value and the received signal. The received signal is adapted using the generated interference reference signal.
Abstract:
In one example, a communications circuit processes an amplitude modulated signal by using a first circuit having signal paths to process an amplitude modulated signal as represented by an in-phase component and by a quadrature component, and by using a second circuit to discern random noise pulses from the quadrature component of the amplitude modulated signal. In response, the second circuit generates an estimate of overall noise representing the random noise pulses in the amplitude modulated signal. In the above and more specific examples, the random noise pulses may appear as pulses which overlap with, in terms of time and bandwidth of frequency spectrum, information of the amplitude modulated signal, and the first and second circuits may be part of an RF radio receiving the amplitude modulated signal from an antenna.
Abstract:
A controller for a haptic feedback element is described, the haptic feedback element being configured to generate haptic vibrations, wherein the controller comprises a sense input and is configured to sense a signal induced on at least one terminal of the haptic feedback element in response to an external vibration source. The controller may sense vibrations induced one or more terminals of a haptic feedback element. The external vibration source may for example be due to speech transmitted via bone conduction which can be detected and subsequently processed.
Abstract:
A system for producing a mechanical haptic pattern based on linear resonance actuator (LRA) signal is disclosed. The system includes an actuator displacement sensor, the actuator displacement sensor configured to apply an alternating measurement signal at a predetermined frequency to an actuator motor. The actuator displacement sensor configured to use a measure of a voltage across and a current through the actuator motor to determine its impedance at the predetermined frequency and determine an estimated displacement of the actuator motor using said impedance and a predetermined displacement-impedance function. The system also includes a controller configured to accept the LRA signal and the estimated displacement, wherein the controller is configured to alter the input LRA signal according to the estimated displacement to limit excursion of a moving part of the actuator motor.
Abstract:
A system for producing a mechanical haptic pattern based on linear resonance actuator (LRA) signal is disclosed. The system includes an actuator displacement sensor, the actuator displacement sensor configured to apply an alternating measurement signal at a predetermined frequency to an actuator motor. The actuator displacement sensor configured to use a measure of a voltage across and a current through the actuator motor to determine its impedance at the predetermined frequency and determine an estimated displacement of the actuator motor using said impedance and a predetermined displacement-impedance function. The system also includes a controller configured to accept the LRA signal and the estimated displacement, wherein the controller is configured to alter the input LRA signal according to the estimated displacement to limit excursion of a moving part of the actuator motor.