摘要:
A method of treating an exhaust gas containing SO.sub.2 and HF which is characterized by using an absorbing liquid containing CaCO.sub.3 and Ca(OH).sub.2 as absorbents to be fed to an absorption tower for the exhaust gas, circulating the absorbing liquid from a second slurry tank to the absorption tower, from the absorption tower to a first slurry tank, and from the first flurry tank to the second slurry tank, introducing Ca(OH).sub.2 into the second slurry tank to keep the pH value of the absorbing liquid in the second slurry tank in the range of 5.5-7.0, and blowing air into the absorbing liquid in the first slurry tank.
摘要:
There is provided a method for flue gas desulfurization which is capable of conducting minute control of oxidation and which is capable of maintaining the concentration of sulfurous acid in an absorbent liquid within a proper range in a highly reliable and efficient manner, even in the case where an abrupt change occurs in the operational conditions of the system. In the method for controlling the oxidation in flue gas desulfurization, the value of proportional sensitivity K in the feed back control process, which is based primarily on the oxidation-reduction potential, is increased depending on the deviation .epsilon. in a region where the detected oxidation reduction potential value PN is below the target oxidation reduction potential value SN in correspondence with the characteristic change of the oxidation-reduction potential against the concentration of sulfurous acid.
摘要:
An exhaust fume desulfurization process is disclosed which comprises the steps of contacting an off-gas containing SO.sub.2 with a slurry containing calcium and manganese compounds, introducing a gas containing oxygen into the slurry, detecting the amount of the absorption of oxygen by the slurry, and regulating the amount of manganese present in the slurry based upon the amount of oxygen absorbed by the slurry. The desulfurization rate is correspondingly adjusted and the desulfurized gas product is recovered.
摘要:
A flue gas desulfurizer having an absorption tower for bringing untreated flue gas into gas-liquid contact with an absorbent slurry, wherein there is provided heat recovery means for recovering heat from the flue gas passing through the flue gas inlet section of the absorption tower prior to gas-liquid contact, and to boiler equipment including heat release means for releasing the recovered heat to heat utilization equipment. This invention also relates to thermal electric power generation equipment including extraction feedwater heaters for heating boiler feedwater with steam from steam turbines, a flue gas desulfurizer using an absorbent slurry, and means for recovering heat from the flue gas passing through the flue gas desulfurizer and/or the absorbent slurry within the flue gas desulfurizer, whereby boiler feedwater is preheated by the recovered heat and then introduced into the extraction feedwater heaters.
摘要:
A flue gas treating system for removing sulfur dioxide and dust present in flue gas by gas-liquid contact with an absorbing fluid and has an inlet side absorption tower of the liquid column type and an outlet side absorption tower of the liquid column type, each of which has a uniform cross-section over the area of gas-liquid contact, and the cross-section of flue gas in the inlet side absorption tower is smaller than the cross section of flue gas in the outlet side absorption tower. The inlet side absorption tower is constructed in the form of a parallel-flow absorption tower wherein the flue gas flows downward for favorable collection of dust and absorption of sulfur dioxide. The outlet side absorption tower is constructed in the form of a counter-flow adsorption tower wherein the flue gas flows upward for favorable absorption of sulfur dioxide. The absorbing fluid within a tank is injected upward from a plurality of spray pipes.
摘要:
Here are disclosed a method for desulfurizing an exhaust gas which is characterized by comprising a gas absorbing section in which an absorbing solution absorbs SO.sub.2 in the exhaust gas in order to become an acid solution containing a sulfite; an oxidizing section in which the sulfite is oxidized; a neutralizing section in which the absorbing solution is neutralized by adding an SO.sub.2 absorbent; and a closed circulating circuit for delivering the solution drawn out from the gas absorbing section to the oxidizing section, delivering the solution drawn out from the oxidizing section to the neutralizing section, and delivering the solution drawn out from the neutralizing section to the gas absorbing section; and a method for simultaneously treating SO.sub.2 and HCl which the abovementioned exhaust gas contains.
摘要:
Here is disclosed a method for treating SO.sub.2, SO.sub.3 and a dust simultaneously which comprises causing an exhaust gas containing at least SO.sub.2, SO.sub.3 and the dust to pass through a dry dust collector in order to remove most of the dust therefrom, delivering the exhaust gas to a gas absorbing device, and using at least one of calcium hydroxide and calcium carbonate as an absorbent in the gas absorbing device to remove SO.sub.2 and the dust, which has passed through the dry dust collector, in the exhaust gas therefrom, the method being characterized by comprising the steps of blowing air into an absorbing solution fed to the gas absorbing device in order to oxidize the absorbing solution and to thereby form a gypsum therein; separating a part of the absorbing solution into a slurry mainly containing the gypsum grains and a slurry mainly containing the dust; obtaining the by-product gypsum from the slurry mainly containing the gypsum grains; adding an alkali to the slurry mainly containing the dust; spraying this slurry into the exhaust gas on the upstream side of the dry dust collector; carrying out the collection, drying and solidification of SO.sub.3 ; and collecting the resultant solid together with the dust by the dry dust collector.
摘要:
A method for continuously measuring the concentration of CaCO.sub.3 in slurries comprising CaCO.sub.3 is described. The method comprises continuously sampling a given amount of the slurry, feeding the sampled slurry into an agitated continuous reactor container which is isolated from the outside air, keeping the slurry in the reactor container at a temperature of at least 50.degree. C., adding sulfuric acid or hydrochloric acid to adjust the pH to below 4, blowing air into the slurry in the reactor container, withdrawing from the reactor container CO.sub.2, produced by the reaction between CaCO.sub.3 and the acid, by entrainment with the air, and calculating the concentration of CaCO.sub.3 in the slurry from the concentration of CO.sub.2 in the withdrawn gas, the amount of the sampled slurry and the flow rate of the blown air.
摘要:
A gas-liquid contacting method which using a gas-liquid contacting facility comprised with a tower having a reservoir for a gas absorbing liquid at the bottom part and a space for the flow of a gas to be treated in the upper part, a header pipe installed in the tower, a pump for feeding the gas absorbing liquid to the header pipe from the reservoir of the gas absorbing liquid, a throat pipe attached to the header pipe, a discharge pipe with cross-sectional area greater than the cross-sectional area of the throat pipe, and a diffuser pipe that connects the throat pipe and the discharge pipe, whereby the gas absorbing liquid boils under low pressure, by making the cross-sectional area of the throat pipe to be sufficiently smaller than the cross-sectional area of the discharge pipe, then squirting the gas absorbing liquid into the gas to be treated from the discharge pipe.
摘要:
In treating exhaust gases containing SO.sub.2, HCl and HF, there is disclosed a method of treating such exhaust gas which comprises detecting the amounts of HCl and HF in the exhaust gas and supplying an amount of a magnesium compound commensurate with a stoichiometric amount to become at least MgCl.sub.2 and MgF.sub.2 in an exhaust-gas treating tower and a calcium compound as a SO.sub.2 solvent into the exhaust-gas treating tower.The aforesaid method of treating an exhaust gas comprises a method of causing Mn ion to coexist in an absorbing solution in contact with the exhaust gas.