Abstract:
A copy-free transition tool converts storage objects from a source format associated with a source storage system to a destination format associated with a destination storage system. The transition tool exports configuration information associated with the source storage system to the destination storage system and brings the storage objects offline. Once the transition tool determines that the storage devices containing the storage objects are physically connected to the destination storage system, the tool can convert file systems from the source format to the destination format while leaving data and file layout unchanged. The tool can also modify metadata associated with each of the storage objects to conform to the destination format and store the modified metadata with the destination storage system.
Abstract:
The disclosed techniques enable push-based piggybacking of a source-driven logical replication system. Logical replication of a data set (e.g., a snapshot) from a source node to a destination node can be achieved from a source-driven system while preserving the effects of storage efficiency operations (deduplication) applied at the source node. However, if missing data extents are detected at the destination, the destination has an extent pulling problem as the destination may not have knowledge of the physical layout on the source-side and/or mechanisms for requesting extents. The techniques overcome the extent pulling problem in a source-driven replication system by introducing specific protocols for obtaining missing extents within an existing replication environment by piggybacking data pushes from the source.
Abstract:
Methods, non-transitory computer readable media, and computing devices that group objects with different service level objectives for an application includes receiving a request including a service level data to provision a volume. One or more aggregates for the received service level is identified. a resource pool including the identified one or more aggregates is generated. The volume including the generated resource pool with the identified one or more aggregates for the received service level is provisioned.
Abstract:
The disclosed techniques enable push-based piggybacking of a source-driven logical replication system. Logical replication of a data set (e.g., a snapshot) from a source node to a destination node can be achieved from a source-driven system while preserving the effects of storage efficiency operations (deduplication) applied at the source node. However, if missing data extents are detected at the destination, the destination has an extent pulling problem as the destination may not have knowledge of the physical layout on the source-side and/or mechanisms for requesting extents. The techniques overcome the extent pulling problem in a source-driven replication system by introducing specific protocols for obtaining missing extents within an existing replication environment by piggybacking data pushes from the source.
Abstract:
A method, non-transitory computer readable medium, and device that replicates data and provides instantaneous access to data includes receiving in a destination volume one or more named data extents and one or more references to the one or more named data extents associated with a file in parallel from a source volume. A determination is made to check whether the one or more references arrive before the one or more named data extents arrive. Each of the received one or more references which are determined to have arrived prior to the one or more data extents is allocated as absent by the storage management computing device. An instantaneous access to the file is provided during the allocation.
Abstract:
The disclosed techniques enable push-based piggybacking of a source-driven logical replication system. Logical replication of a data set (e.g., a snapshot) from a source node to a destination node can be achieved from a source-driven system while preserving the effects of storage efficiency operations (deduplication) applied at the source node. However, if missing data extents are detected at the destination, the destination has an extent pulling problem as the destination may not have knowledge of the physical layout on the source-side and/or mechanisms for requesting extents. The techniques overcome the extent pulling problem in a source-driven replication system by introducing specific protocols for obtaining missing extents within an existing replication environment by piggybacking data pushes from the source.
Abstract:
A method and apparatus for replicating a data container of a source storage server at the logical level in an unordered stream of individual data units are described. In certain embodiments, the replication operations can be performed without regard to the differences in geometry of physical persistent storage of the source and destination storage servers and without regard to the differences in data container format of the source and destination storage servers. An initial replication operation of the source data container is performed by transferring the data objects within the source data container to a replica data container in the destination storage server as an unordered stream of individual data units while preserving data object identifiers of the source data objects. Afterwards, incremental replication operations can be performed to capture modifications to the source data container over time after the initial replication operation.