Abstract:
The invention is directed to the selectable mode buffer circuit including a plurality of pads, a mode selecting circuit, and a control circuit. The mode selecting circuit has a plurality of switches, coupled to the pads, and performs a charge pumping operation or an interfacing operating by changing on or off status of at least one of the switches according to a mode selecting signal. The control circuit receives the mode selecting signal, and generates a plurality of input signals for controlling the switches according to the mode selecting signal.
Abstract:
A noise detection device includes a drive circuit, a sense circuit and a controller. The drive circuit drives a plurality of drive lines having a first polarity pattern and a second polarity pattern, wherein an operation of the first polarity pattern and the second polarity pattern substantially equals zero over a predetermined time period. The sense circuit senses a plurality of sense signals from at least one sense line during the predetermined time period. The controller derives a magnitude of a noise signal from the at least one sense line according to the sense signals.
Abstract:
A noise detection device, system, and a method of detecting noise signals are disclosed. The noise detection device includes a drive circuit, a sense circuit and a controller. The drive circuit drives a plurality of drive lines having a first polarity pattern and a second polarity pattern, wherein an operation of the first polarity pattern and the second polarity pattern substantially equals zero over a predetermined time period. The sense circuit senses a plurality of sense signals from at least one sense line during the predetermined time period. The controller derives a magnitude of a noise signal from the at least one sense line according to the sense signals.
Abstract:
A phase compensation method for multi-scan in touch sensing system is provided. The phase compensation method includes the following steps. A plurality of carrier signals are received, and a demodulating operation is preformed on each of the carrier signals to obtain a first component signal and a second component signal of each of the carrier signals. An inverse matrix operation is respectively preformed on the first component signal and the second component signal both demodulated by the demodulating operation. A signal mixing operation is preformed on the first component signal and the second component signal both processed by the inverse matrix operation to obtain raw data of each of the carrier signals. Furthermore, a phase compensation circuit applying afore-said phase compensation method is also provided.
Abstract:
A detection method for a capacitive touch device is provided. The detection method includes steps of: driving an Mth driving line among an m driving lines of the capacitive touch device, wherein M is a natural number smaller than or equal to m and greater than 1; selecting a plurality of sensing lines among n sensing lines; obtaining a plurality of sensing values by detecting voltage changes at the selected sensing lines; determining whether to perform a noise reduction operation on the sensing values; if yes, calculating respective differences between the sensing values and a baseline value, and generating a noise correction value corresponding to the sensing values by performing a statistical computation on the differences; and correcting the differences according to the noise correction value.
Abstract:
The disclosure provides a method for driving an OLED touch-and-display device, a driving circuit, and an OLED touch-and-display device. The method includes: generating gate driving signals that are sequentially shifted based on the first clock signal (GCK); sequentially applying the gate driving signals that are sequentially shifted to the plurality of GLs; writing display data in a display driving period for each row of pixels, to the row of pixels, wherein a time length of the display driving period depends on a corresponding gate driving signal and is smaller than the clock cycle; and for a display driving period for each of at least one row of pixels, setting a touch detection period corresponding to the display driving period or corresponding to the display driving period for previous row of pixels at least partially overlapping with the display driving period in time.
Abstract:
The disclosure provides a method for driving an OLED touch-and-display device, a driving circuit, and an OLED touch-and-display device. The method includes: generating gate driving signals that are sequentially shifted based on the first clock signal (GCK); sequentially applying the gate driving signals that are sequentially shifted to the plurality of GLs; writing display data in a display driving period for each row of pixels, to the row of pixels, wherein a time length of the display driving period depends on a corresponding gate driving signal and is smaller than the clock cycle; and for a display driving period for each of at least one row of pixels, setting a touch detection period corresponding to the display driving period or corresponding to the display driving period for previous row of pixels at least partially overlapping with the display driving period in time.
Abstract:
A noise detection method including the following steps is provided. During different time periods, plural sets of driving signals are respectively transmitted to driving lines of the touch panel to drive sensing lines of the touch panel to generate plural sets of sensing signals. The plural sets of sensing signals are respectively received and calculated to obtain plural sets of summation signals. One set of summation signals includes first summation signals, and another set of summation signals includes second summation signals. A part or all of the first summation signals is replaced by the second summation signals. A signal value of a combination of the first and the second summation signals is calculated to obtain a summation thereof. The summation of the signal value of the combination is smaller than a summation of a signal values of the first summation signals before recombination.
Abstract:
A carrier touch sensing system includes a demodulation circuit coupled to a touch panel, used for performing in-phase and quadrature demodulations to a plurality of carrier sensing signals to generate and store a plurality of phase delay information if the carrier touch sensing system operates in a phase calibration mode. The demodulation circuit is further used for performing in-phase demodulation to the plurality of carrier sensing signals according to the plurality of phase delay information to generate a plurality of touch signals if the carrier touch sensing system operates in a normal scan mode.
Abstract:
A capacitance measurement device for measuring the capacitance of a measured capacitor includes a charging control unit for charging the measured capacitor; a discharging control unit for discharging the measured capacitor; a voltage converting circuit coupled to the measured capacitor, for converting a voltage signal on the measured capacitor into a value that represents the capacitance of the measured capacitor; wherein in a first period, one of the charging control unit and the discharge control unit charges/discharges the measured capacitor and in a second period after the first period, the other one of the charging control unit and the discharge control unit discharges/charges the measured capacitor.