Abstract:
A timing control circuit and an operation method thereof are provided. The timing control circuit includes a receiving circuit, a line memory, and a timing generating circuit. The receiving circuit receives a video packet stream from the outside and provides an external horizontal sync signal and a first data signal. The line memory temporarily stores the first data signal, and outputs a second data signal to a source driver according to an internal horizontal sync signal generated by the timing generating circuit. A video frame period of the second data signal includes a video display operation period and a touch detection period. A video display operation period is divided into a plurality of sub-periods. The timing generating circuit performs a synchronization operation in each of the sub-periods, so as to synchronize the timing of the internal horizontal sync signal with the timing of the external horizontal sync signal.
Abstract:
This disclosure relates to techniques for a driving apparatus including a reordering circuit and a source driving circuit. The reordering circuit can be configured to reorder a plurality of sub-pixel data of an input data string to generate a reordered data string so as to reduce a color switching number associated with a target data line. The source driving circuit can be coupled to the reordering circuit to receive the reordered data string. The source driving circuit can be configured to drive the target data line of a display panel according to the reordered data string.
Abstract:
A power management device including a power management circuit is provided. The power management circuit is configured to output a first power signal and a second power signal to a pixel circuit of a display panel. The pixel circuit includes an organic light-emitting diode. The organic light-emitting diode includes an anode terminal and a cathode terminal. The anode terminal is coupled to the first power signal. The cathode terminal is coupled to the second power signal. The second power signal is an alternating-current voltage. In addition, a pixel circuit of a display panel, and a power management method for the pixel circuit of the display panel are also provided.
Abstract:
A display method for a monitor is capable of dynamically adjusting a frame rate of a display panel in a monitor. The display method includes storing a display data outputted from a host to a memory unit, generating a control signal according to a frequency of storing the display data to the memory unit, adjusting the frame rate according to the control signal and a predefined adjustment value, and outputting the display data stored in the memory unit to the display panel according to the frame rate.
Abstract:
A method of controlling a stylus pen of a touch panel includes steps of: outputting an uplink control signal to a sensing electrode of the touch panel for controlling the stylus pen in an uplink control period; and outputting a direct-current (DC) voltage to a gate line of the touch panel in the uplink control period.
Abstract:
An imaging control circuit for collecting object image data for an object presented on a portion of a surface of a display panel is provided. The imaging control circuit includes a first circuit, a second circuit and a third circuit. The first circuit is adapted to receive touch sensing signals from a set of touch sensors located in the display panel. The second circuit is adapted to receive object image sensing signals from a set of imaging sensors. The object image sensing signals are associated with the object detected on the surface of the display panel. The third circuit is adapted to determine a location of the object from the touch sensing signals and generate a variable sized object imaging zone based on a location and a size of an object image. The variable sized object imaging zone includes a variable subset of the imaging sensors.
Abstract:
An electronic circuit includes a fingerprint sensing circuit that is configured to receive fingerprint sensing signals corresponding to a fingerprint image from fingerprint sensors via fingerprint sensing lines. The fingerprint sensing circuit is further configured to select a subset of the fingerprint sensing lines to form a fingerprint sensing zone having at least one boundary and adapted for a fingerprint sensing operation based on a fingerprint touch area. The subset of fingerprint sensing lines is selected based on the at least one boundary of the fingerprint sensing zone. The fingerprint sensing circuit is further configured to generate the fingerprint image according to the fingerprint sensing signals by a remapping operation.
Abstract:
A method of controlling a stylus pen of a touch panel includes steps of: outputting an uplink control signal to a sensing electrode of the touch panel for controlling the stylus pen in an uplink control period; and outputting a direct-current (DC) voltage to a gate line of the touch panel in the uplink control period.
Abstract:
A control circuit configured to control a display panel includes a display driver circuit, a touch sensing circuit and a fingerprint sensing circuit. The touch sensing circuit, coupled to the display driver circuit and the fingerprint sensing circuit, is configured to detect a finger touch on the display panel, determine a position of the display panel on which the finger touch is detected, and send information associated with the position to the fingerprint sensing circuit. The fingerprint sensing circuit is configured to perform fingerprint sensing on at least one zone corresponding to the position and receive fingerprint image signals from the at least one zone correspondingly.
Abstract:
A chip, an electronic device, a panel and an operation method thereof are provided. The chip can control the panel to perform fingerprint sensing. Fingerprint sensing pixels of the panel are divided into a plurality of fingerprint zones along a column direction. The chip includes a selecting circuit and a control circuit. The selecting circuit obtains information about a selected fingerprint zone among the fingerprint zones. The control circuit provides multiple control signals for controlling the panel to perform fingerprint sensing. The control signals include multiple start pulse signals. The start pulse signals collectively indicate the selected fingerprint zone. The number of the fingerprint zones is greater than the number of the start pulse signals.