Abstract:
The invention relates to a method and arrangement for connecting a processor to an ASIC. In the arrangement, the processor generates control signals employed when the processor reads data from and writes data to the ASIC. The arrangement comprises means (10) for receiving control signals from the processor and generating read and write signals on the basis of the received signals. The means (10) are implemented by an asynchronous state machine that changes its state on the basis of the received signals. The means (10) change their state without a synchronizing clock signal.
Abstract:
The invention relates to a reception method and a receiver. Mechanisms are used for generating, at each level, numbers relating to a bit 1 and a bit 2 and representing a probability of a transition metric of survivor paths. Mechanisms are used for separately summing the numbers relating to the bit 1 and the bit 0 of more than one state and representing the probability of the transition metric. Mechanisms are used for generating logarithms of the sums and means for generating a difference of the logic numbers relating to the bit 1 and the bit 0 representing the probability of the transition metric, whereby a received bit can be determined without a correct path tracing phase.
Abstract:
The present invention relates to reception method and apparatus. The invention is characterized in that received symbols are function of bits which are determined by means of temporally successive trellis levels, which comprises a predetermined number of states, with a transition from each of the states to a state at the next level being performed on the basis of a received signal.
Abstract:
The invention relates to a method for generating a signal amplitude behaving according to a desired function and to a converter implementing the method. In the method, a function that is used for controlling the behaviour of a signal amplitude is piecewise linearized to provide straight lines; a slope and a constant term of each straight line is stored in a memory (202 and 203); and a midpoint of each straight line is shifted to form an origin in a common coordinate system. Variable data (213) is used as address data, which is divided into an MSB (207) and an LSB part (208). The MSB part (207) is used for addressing from the memory (202 and 203) the slope and the constant term of the straight line. The LSB part (208) functions as a variable of a common coordinate system of the straight lines. The amplitude is generated by summing in a summer (205) a product determined by the slope and the LSB part to the constant term, the product being generated in means (204) as a selected summing of arithmetically shifted, masked and complemented slopes controlled by the LSB part.
Abstract:
A base station for a mobile communication system which has switching centers and base stations connected by telecommunication links, each base station transmitting radio signals divided into a plurality of time-slots in a frame structure, a controller unit for controlling the base station; a transmitter for generating a transmission signal, the transmitter being connected to the switch to supply the transmission signal to the antenna via the switch; a counter for counting the length of time-slots in a frame structure synchronized by a frame alignment signal, a programmable memory in which one or more delay values are each stored as a counter value, a selecting unit for selecting a delay value desired by the user, and a power level memory responsive to the counter and storing power level memory momentary power values corresponding to the parts of the time-slots in the frame structure, as well as information on whether the switch supplying the transmission signal of the transmitter to the antenna is switched off or on, or neither, the power level memory being arranged so that each part of the time-slot in a frame structure is represented by a specific memory address of the power level memory, and in the memory location corresponding to the memory address, in addition to momentary power values of the curve indicating the power level, information is stored on whether the switch supplying the transmission signal of the transmitter to the antenna is switched off or on, or neither.
Abstract:
A method and a receiver for forming transition metrics in the receiver of a digital cellular radio system. The receiver includes a hardware implementation of a transition metrics calculation unit for Viterbi decoding. The receiver includes a shift register for storing coefficients of a generator polynomial of a convolutional code. The receiver also includes masking means arranged to mask a state of the Viterbi decoding by the coefficients of the polynomial. The receiver has odd parity means arranged to form a parity bit of the state of the masked Viterbi decoding, the parity bit being arranged to control a block forming the transition metrics.
Abstract:
A method and corresponding equipment for use by a mobile station and/or a radio access network, for altering one or more characteristics of transmissions of the mobile station to a base transceiver station of the radio access network in respect to power and/or modulation and/or coding of the transmissions, based on monitoring broadcast transmissions from other base transceiver stations of the radio access network and determining an estimate of the likelihood of transmissions by the mobile station interfering with communication between the other base transceiver stations and the mobile stations in communication with those other base transceiver stations.
Abstract:
Embodiments of the invention relate to uplink communication in a GSM/EDGE telecommunication system. A method according to certain embodiments of the invention include at least one wide-band carrier wave in the group of carrier waves being generated in a mobile station by applying linear modulation at a first modulation symbol rate, the first modulation symbol rate being a multiple of a second modulation symbol rate, while preserving a predefined carrier spacing and allowing the at least one wide-band carrier wave to overlap with at least one adjacent carrier wave.
Abstract:
A transmitter clips a transmission signal before transmission in order to reduce the strength of at least one peak of the transmission signal exceeding a predetermined threshold. The transmitter includes a clipper having a minimizer, a filter and an adder. The minimizer minimizes of a cost function with respect to an optimization signal, the cost function having weighted terms as a function of the optimization signal. The terms relate to an effective modulation distortion and an effective overshoot exceeding the predetermined threshold. The filter forms a clipping signal by filtering the optimization signal formed as a result of the minimization according to the spectrum emission mask requirements of the radio system. The adder subtracts the clipping signal from the transmission signal.
Abstract:
An apparatus includes a radio frequency receiver and a timing adjustment unit that contains at least two channel impulse response estimators. The at least two channel impulse response estimators include an on-time estimator and at least one of an early estimator and a late estimator. The apparatus also includes a calculation unit that is configurable to obtain a channel estimate for each measured channel impulse response and to average obtained channel estimates over a plurality of received signal events to determine a timing adjustment in accordance with residual signal power.