摘要:
An ultrasonic diagnostic imaging system scans a plurality of planar slices in a volumetric region containing tissue which has been perfused by a contrast agent. The plurality of slices scanned are parallel to each other. Following detection of the image data of the slices the slice data is combined by projecting the data in the elevation dimension to produce an elevationally combined slice image. Combining may be by means of an averaging or maximum intensity detection or weighting process or by raycasting in the elevation dimension in a volumetric rendering process. The elevationally combined slice image is processed to produce a qualitative or quantitative measure of perfusion, such as an image with degrees of perfusion indicated by a range of brightness levels, an image of color perfusion parameters, or a perfusion curve or curve parameter indicating rate of perfusion.
摘要:
An ultrasonic diagnostic imaging system is described which quantifies regurgitant flow through a mitral valve. A flow quantification processor (34) in the ultrasound system produces a mathematical model of a flow velocity field proximal to a regurgitant orifice. The velocity field model produces values of velocity vectors directed toward the regurgitant orifice. These modeled values are modified for the effects of ultrasound physics and ultrasound system operation to produce expected velocity values. The expected velocity values are compared with actual Doppler velocities measured by the ultrasound system, and the differences accumulated to a mean square error which is used to adjust parameters of the model such as the orifice location and flow velocities. When this iterative processing converges with a desired comparison, parameters derived from the finally adjusted model are used to calculate the true orifice location, flow rate, and volume flow.
摘要:
An ultrasound image display method and System for a two-dimensional monitor (40) that synchronizes a swiveling or rotating volumetrically rendered three-dimensional ultrasound image (76) with the oscillation of an oscillating ultrasound object (72), such as a beating heart or breathing lung. The invention includes swiveling instructions for repetitively swiveling the volumetric ultrasound image (76) in three-dimensional space. Oscillation frequency measuring instructions (108) measure the oscillating ultrasound object's oscillation frequency. Synchronization instructions (118) synchronize a repetitive rotation of the object with the oscillation frequency such that at a predetermined point the beginning of a rotation repetition (110) coincides with the beginning of an oscillation. The volumetric ultrasound image display (76) provides the options of a live display, a variably static display, and pre-recorded display capable of continuous replay.
摘要:
An Archery Manufacturers & Merchants Organization (AMO) standards-based, arrow assembly, weight-and-length enhancer for archers and/or bowhunters is disclosed, which provides a fully compatible, standards-based way to increase the length and/or weight of the front of the arrow assembly by simply unscrewing the existing arrowhead from the insert of the arrow and screwing this enhancer between the two components. By having internal threads on the device located directly within the outer shank area of the enhancer, the strength is increased due to a decrease in leverage, and the overall length of the assembly is kept to a minimum.
摘要:
An aerodynamically and structurally superior, fixed-blade hunting arrowhead providing higher penetration coupled with a structurally sound, non-deflecting, blade-cutting area to take down wild game quickly and humanely. The assembly comprises the ferrule, main blade, and sub-blade, wherein the unitary ferrule has a machined structure that holds and reinforces the blade units as well as incorporates a concave-faceted cutting tip, blade-location channels, cavities for blade snap retention, and rearmost threaded portion for attachment to a standard arrow insert. The main blade is a one-piece element which incorporates two forward-cutting blades and two rear blades, as well as a rearmost anchoring means of attaching the blade to the ferrule. The sub-blade is a one-piece element positioned perpendicular to the main blade and is retained in the same manner as the main blade by means of integrated projections snapping into cavities within the ferrule.
摘要:
An ultrasound image display method and System for a two-dimensional monitor (40) that synchronizes a swiveling or rotating volumetrically rendered three-dimensional ultrasound image (76) with the oscillation of an oscillating ultrasound object (72), such as a beating heart or breathing lung. The invention includes swiveling instructions for repetitively swiveling the volumetric ultrasound image (76) in three-dimensional space. Oscillation frequency measuring instructions (108) measure the oscillating ultrasound object's oscillation frequency. Synchronization instructions (118) synchronize a repetitive rotation of the object with the oscillation frequency such that at a predetermined point the beginning of a rotation repetition (110) coincides with the beginning of an oscillation. The volumetric ultrasound image display (76) provides the options of a live display, a variably static display, and pre-recorded display capable of continuous replay.
摘要:
A three dimensional ultrasound imaging device, having an interpolator that creates up sampled ultrasound image information from a three dimensional ultrasound image information using interpolation; and a memory that stores at least one of the three dimensional ultrasound image information and the up sampled ultrasound image information. The three dimensional ultrasound imaging device can have a probe that sends ultrasound waves, gathers reflected ultrasound waves and creates ultrasound information and a processor that converts the ultrasound information to three dimensional ultrasound image information. The ultrasound imaging device may also have a display that displays the up sampled image information. The three dimensional ultrasound imaging device may use at least one of 2 image to 3 image interpolation, 2 image to 4 image interpolation, 3 image to 4 image interpolation and 3 image to 5 image interpolation. The three dimensional ultrasound imaging device may use two dimensional solids and three dimensional volumes. The three dimensional ultrasound imaging device may also create up sampled ultrasound image information that has a greater number of frames, a greater number of three-dimensional frames, a greater number of two-dimensional volumes, a greater number of three dimensional volumes and a larger amount of ultrasound information.
摘要:
A system for coherence imaging may receive ultrasound signals each having a respective delay associated with a respective ultrasonic transducer element in an ultrasonic transducer array. The system may obtain an approximation of the auto-correlation of ultrasound signals without any auto-correlation calculation, and determine the output image based on the approximation. In approximating the auto-correlation, the system may group the ultrasound signals into multiple portions, each corresponding to a respective sub-aperture of a plurality of sub-apertures of the ultrasonic transducer array. The system may determine a coherent sum of signals for each sub-aperture, perform a square operation or magnitude square operation over the coherent sum to obtain resulting data, normalize the resulting data, and sum the resulting data for all of the sub-apertures to generate the output image. A sub-aperture in the plurality of sub-apertures may overlap with another sub-aperture.
摘要:
Aspects of the technology described herein relate to ultrasound imaging of lungs. An ultrasound device may be configured with a set of parameter values associated with a shallow lung imaging mode. A selection of a change in imaging depth may be received. If the selected imaging depth is greater than or equal to a threshold imaging depth, the ultrasound device may be configured with a set of parameter values associated with a deep lung imaging mode. The set of parameter values associated with the shallow lung imaging mode may be optimized for imaging lung sliding and the set of parameter values associated with the deep lung imaging mode may be optimized for imaging A lines and B lines.
摘要:
Aspects of the technology described herein relate to configuring an ultrasound system with imaging parameter values. In particular, certain aspects relate to configuring an ultrasound system to produce a plurality of sets of ultrasound images, each respective set of the plurality of sets of ultrasound images being produced with a different respective set of a plurality of sets of imaging parameter values; obtaining, from the ultrasound system, the plurality of sets of ultrasound images; determining a set of ultrasound images from among the plurality of sets of ultrasound images that has a highest quality; and based on determining the set of ultrasound images from among the plurality of sets of ultrasound images that has the highest quality, automatically configuring the ultrasound system to produce ultrasound images using a set of imaging parameter values with which the set of ultrasound images that has the highest quality was produced.