Abstract:
A satellite radiotelephone frequency band can be reused terrestrially by an ancillary terrestrial network even within the same satellite cell, using interference reduction/cancellation techniques. An interference reducer is responsive to a space-based component and to an ancillary terrestrial network. The interference reducer is configured to reduce interference in wireless communications that are received by the space-based component from first radiotelephones in the satellite footprint over a satellite radiotelephone frequency band using wireless communications that are received by the ancillary terrestrial network from selected ones of second radiotelephones in the satellite footprint over the satellite radiotelephone frequency band and/or wireless communications that are transmitted by the ancillary terrestrial network to the second radiotelephones in the satellite footprint over the satellite radiotelephone frequency band. The interference reducer may include a prefilter that is configured to determine the selected ones of the second radiotelephones.
Abstract:
A system and method of operation for efficiently reusing and/or sharing at least a portion of the frequency spectrum between a first satellite spot beam and a second satellite spot beam, and/or an underlay terrestrial network associated with a second satellite spot beam. The spectrum is efficiently reused and/or shared between respective spot beams and/or associated underlay terrestrial systems in a manner minimizes interference between the respective satellite and terrestrial systems.
Abstract:
Wireless Orthogonal Frequency Division Multiplexing and/or Orthogonal Frequency Division Multiple Access (OFDM/OFDMA) and/or Time-Frequency Division Multiplexing and/or Time-Frequency Division Multiple Access (T-FDM/T-FDMA) systems and methods include forward and return link carriers comprising numbers of sub-band carrier groupings that are not identical. A return link carrier may consist of fewer sub-band carriers than a forward link carrier and the return link carrier also may consist of a single sub-band carrier.
Abstract:
An Ancillary Terrestrial Network (ATN) includes at least one Ancillary Terrestrial Component (ATC) that is configured to provide wireless communications using frequencies of a satellite frequency band. The ATN provides communications based on a GSM, cdma2000 and/or W-CDMA air interface, under a constrained capacity measure. The capacity measure of the ATN may also be constrained when the ATN provides communications based on an Orthogonal Frequency Division Multiplexed (OFDM) and/or Orthogonal Frequency Division Multiple Access (OFDMA) air interface. Analogous methods of controlling an ATN also may be provided.
Abstract:
A satellite communications system includes a plurality of feeder link antennas, a primary satellite, and an auxiliary satellite. The feeder link antennas are substantially co-located relative to one another. The primary satellite is configured to receive information over a plurality of return service links from radioterminals, to communicate a first portion of the information over at least one return feeder link directly to a first one of the feeder link antennas, and to communicate a second portion of the information over at least one inter-satellite link. The auxiliary satellite is spaced apart from the primary satellite, and configured to receive the second portion of the information from the primary satellite via the at least one inter-satellite link, and to communicate the second portion of the information across at least one return feeder link to a second one of the feeder link antennas.
Abstract:
A method of transmitting information in a wireless communications system can be provided by selectively applying filtering to transmission of a carrier signal of a first band of frequencies of a wireless communications system based on a frequency separation distance between a frequency content of the carrier signal and a second band of frequencies allocated to a communications system other than the wireless communications system.
Abstract:
A radioterminal includes a wireless communications transmitter, a wireless communications receiver and a GPS receiver. A controller is configured to enable the GPS receiver when the wireless communications receiver is receiving wireless communications, and to disable the GPS receiver when the wireless communications transmitter is transmitting wireless communications. Related methods also are described.
Abstract:
A method of operating a communications system including a satellite may include providing communications feeder links between the satellite and a plurality of satellite gateways, and providing a communications service link between the satellite and at least one radioterminal using a plurality of satellite service link antenna feed elements. During a first time period, signals of first and second service link antenna feed elements of the plurality of service link antenna feed elements may be coupled between a first one of the plurality of satellite gateways and the first and second service link antenna feed elements. During a second time period, a signal of the first service link antenna feed element may be coupled between the first satellite gateway and the first service link antenna feed element, and a signal of the second service link antenna feed element may be coupled between a second one of the plurality of satellite gateways and the second service link antenna feed element. Related communications systems and satellites are also discussed.
Abstract:
Methods of reducing interference in wireless communications in a communications system are provided. A wireless communications signal is received within a frequency band. The wireless communications signal includes a desired component and an undesired interference component. The interference component may be caused by, for example, communications by another component of the communications system using frequencies in the frequency band. The received communications signal is converted to a frequency domain representation. Frequencies of the interference component of the frequency domain signal are identified. At least some of the identified frequencies of the interference component of the frequency domain signal are attenuated to generate an interference attenuated frequency domain signal. The interference attenuated frequency domain signal is converted to an interference attenuated time domain signal.
Abstract:
A system and method of operation for efficiently reusing and/or sharing at least a portion of the frequency spectrum between a first satellite spot beam and a second satellite spot beam, and/or an underlay terrestrial network associated with a second satellite spot beam. The spectrum is efficiently reused and/or shared between respective spot beams and/or associated underlay terrestrial systems in a manner minimizes interference between the respective satellite and terrestrial systems.