Abstract:
A buffer circuit has a first transistor and a second transistor in a cascode, and a buffer switch coupled from an output of the buffer to a gate of the second transistor. The buffer circuit is bootstrapped by a bootstrap capacitor, a diode circuit, and a bootstrap switch. The bootstrap capacitor is coupled from the output to the gate of the second transistor through the bootstrap switch. A potential difference is set up across the bootstrap capacitor through the diode circuit. When a low input is given to the buffer circuit, the second transistor turns off and the output goes to a high bias voltage through the first transistor. When a high input is given, the first transistor turns off, the second transistor turns on, and as the output goes low, the gate of the second transistor is bootstrapped to drop the output completely down to a low bias voltage.
Abstract:
A display device including a pixel unit, a selection unit, and a control unit is disclosed. The pixel unit includes a driving transistor and a capacitor. The driving transistor includes a gate and a source. The capacitor is coupled between the gate and the source. The selection unit selectively transmits a first voltage or a second voltage to the driving transistor. The control unit controls the selection unit and receives the voltage of the source.
Abstract:
A system for displaying images is provided, including an active-matrix organic light emission display. The active-matrix organic light emission display comprises an active-matrix array on a display area of an array substrate, a peripheral circuit on a peripheral area of the array substrate, a reflective layer on the peripheral area of the array substrate, between a light emission plane and the peripheral circuit and covering the peripheral circuit, an organic light emission layer on the active-matrix array and a cover layer over the organic light emission layer, covering the display area and the peripheral area.
Abstract:
A pixel and a display panel using the pixel are provided. In the pixel, a driving element provides a driving circuit according to a data signal and a reference voltage to drive a light-emitting element to emit light. The electrical difference of the driving elements due to the fabrication process thereof does not affect the brightness of the light-emitting elements. Moreover, unequal brightness resulted from the equivalent resistance of the power lines is also prevented.
Abstract:
A pixel and a display panel using the pixel are provided. In the pixel, a driving element provides a driving circuit according to a data signal and a reference voltage to drive a light-emitting element to emit light. The electrical difference of the driving elements due to the fabrication process thereof does not affect the brightness of the light-emitting elements. Moreover, unequal brightness resulted from the equivalent resistance of the power lines is also prevented.
Abstract:
A system for displaying images is provided, including an active-matrix organic light emission display. The active-matrix organic light emission display comprises an active-matrix array on a display area of an array substrate, a peripheral circuit on a peripheral area of the array substrate, a reflective layer on the peripheral area of the array substrate, between a light emission plane and the peripheral circuit and covering the peripheral circuit, an organic light emission layer on the active-matrix array and a cover layer over the organic light emission layer, covering the display area and the peripheral area.
Abstract:
An image display system comprises a pixel driving circuit. A storage capacitor is coupled between the first and second nodes. The first switch is turned on in the first and second periods. The second switch, coupled to the first node, is turned on in the first and second periods. The third switch, coupled between the second node and the first switch, is turned on in the first, third and fourth periods. The fourth switch, coupled between the second switch and the first voltage, is turned on in the first, third and fourth periods. The fifth switch, coupled between the second node and the first voltage, is turned on in the first, second and third periods. The sixth switch, coupled between the first node and the reference voltage, is turned on in the fourth period. The first transistor is coupled between the first and second switches and is turned on in the fourth period. During the second period, the voltage between source and gate of the first transistor is a threshold voltage. The electroluminescent element emits light in the fourth period.